An adaptive prefix-assignment technique for symmetry reduction
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2020-08
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
29
Series
Journal of Symbolic Computation, Volume 99, pp. 21-49
Abstract
This paper presents a technique for symmetry reduction that adaptively assigns a prefix of variables in a system of constraints so that the generated prefix-assignments are pairwise nonisomorphic under the action of the symmetry group of the system. The technique is based on McKay's canonical extension framework (McKay, 1998). Among key features of the technique are (i) adaptability—the prefix sequence can be user-prescribed and truncated for compatibility with the group of symmetries; (ii) parallelizability—prefix-assignments can be processed in parallel independently of each other; (iii) versatility—the method is applicable whenever the group of symmetries can be concisely represented as the automorphism group of a vertex-colored graph; and (iv) implementability—the method can be implemented relying on a canonical labeling map for vertex-colored graphs as the only nontrivial subroutine. To demonstrate the practical applicability of our technique, we have prepared an experimental open-source implementation of the technique and carry out a set of experiments that demonstrate ability to reduce symmetry on hard instances. Furthermore, we demonstrate that the implementation effectively parallelizes to compute clusters with multiple nodes via a message-passing interface.Description
Keywords
Canonical extension, Constraint programming, Isomorph rejection, SAT, Symmetry breaking, Symmetry reduction
Other note
Citation
Junttila, T, Karppa, M, Kaski, P & Kohonen, J 2020, ' An adaptive prefix-assignment technique for symmetry reduction ', Journal of Symbolic Computation, vol. 99, pp. 21-49 . https://doi.org/10.1016/j.jsc.2019.03.002