Yes, but did it work?: Evaluating variational inference

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorYao, Yulingen_US
dc.contributor.authorVehtari, Akien_US
dc.contributor.authorSimpson, Danielen_US
dc.contributor.authorGelman, Andrewen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorDy, Jenniferen_US
dc.contributor.editorKrause, Andreasen_US
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorProfessorship Vehtari Akien
dc.contributor.organizationUniversity of Torontoen_US
dc.contributor.organizationColumbia Universityen_US
dc.date.accessioned2019-07-30T07:20:18Z
dc.date.available2019-07-30T07:20:18Z
dc.date.issued2018-01-01en_US
dc.description.abstractWhile it's always possible to compute a variational approximation to a posterior distribution, it can be difficult to discover problems with this approximation". We propose two diagnostic algorithms to alleviate this problem. The Paretosmoothed importance sampling (PSIS) diagnostic gives a goodness of fit measurement for joint distributions, while simultaneously improving the error in the estimate. The variational simulationbased calibration (VSBC) assesses the average performance of point estimates.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationYao, Y, Vehtari, A, Simpson, D & Gelman, A 2018, Yes, but did it work? Evaluating variational inference. in J Dy & A Krause (eds), 35th International Conference on Machine Learning, ICML 2018. vol. 12, Proceedings of Machine Learning Research, no. 80, International Machine Learning Society, pp. 8887-8895, International Conference on Machine Learning, Stockholm, Sweden, 10/07/2018. < http://proceedings.mlr.press/v80/yao18a.html >en
dc.identifier.isbn9781510867963
dc.identifier.issn1938-7228
dc.identifier.otherPURE UUID: cda14f54-6e81-4974-af57-e1a87ed1f532en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/cda14f54-6e81-4974-af57-e1a87ed1f532en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85057318872&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: http://proceedings.mlr.press/v80/yao18a.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/35131932/yao18a.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/39504
dc.identifier.urnURN:NBN:fi:aalto-201907304559
dc.language.isoenen
dc.relation.ispartofInternational Conference on Machine Learningen
dc.relation.ispartofINTERNATIONAL CONFERENCE ON MACHINE LEARNINGfin
dc.relation.ispartofseries35th International Conference on Machine Learning, ICML 2018en
dc.relation.ispartofseriesVolume 12, pp. 8887-8895en
dc.relation.ispartofseriesProceedings of Machine Learning Research ; 80en
dc.rightsopenAccessen
dc.titleYes, but did it work?: Evaluating variational inferenceen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files