Theory of hydrogen and helium impurities in metals
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
16
5382-5397
5382-5397
Series
Physical Review B, Volume 29, issue 10
Abstract
A powerful computational scheme is presented for calculating the static properties of light interstitials in metallic hosts. The method entails (i) the construction of the potential-energy field using the quasiatom concept, (ii) the wave-mechanical solution of the impurity distribution ("zero-point motion"), (iii) calculation of the forces exerted on the adjacent host atoms and their displacements, and (iv) iteration to self-consistency. We investigate self-trapping phenomena in bcc and fcc metals in detail, and calculate both the ground and low-lying excited states. Implications of the wave-mechanical or band picture to diffusion mechanisms and inelastic scattering experiments are discussed. Impurities treated are +, H, D, T, and He, and particular attention is paid to isotope effects among the hydrogenic impurities. It is argued that especially for + and H the quantum nature of the impurity is crucial. The calculated results are in agreement with a wealth of experimental data.Description
Keywords
Other note
Citation
Puska , M J & Nieminen , R M 1984 , ' Theory of hydrogen and helium impurities in metals ' , Physical Review B , vol. 29 , no. 10 , pp. 5382-5397 . https://doi.org/10.1103/PhysRevB.29.5382