Decomposed CNN for Sub-Nyquist Tensor-Based 2-D DOA Estimation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZheng, Hangen_US
dc.contributor.authorZhou, Chengweien_US
dc.contributor.authorVorobyov, Sergiyen_US
dc.contributor.authorWang, Qingen_US
dc.contributor.authorShi, Zhiguoen_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorSergiy Vorobyov Groupen
dc.contributor.organizationZhejiang Universityen_US
dc.contributor.organizationTianjin Universityen_US
dc.date.accessioned2025-01-17T10:35:46Z
dc.date.available2025-01-17T10:35:46Z
dc.date.issued2023en_US
dc.descriptionPublisher Copyright: IEEE
dc.description.abstractDirection-of-arrival (DOA) estimation using sub-Nyquist tensor signals benefits from enhanced performance by extracting structural angular information with multi-dimensional sparse arrays. Although convolutional neural network (CNN) has been employed to achieve efficient DOA estimation in challenging conditions, conventional methods demand excessive memory storage and computation power to process sub-Nyquist tensor statistics. In this letter, we propose a decomposed CNN for sub-Nyquist tensor-based 2-D DOA estimation, where an augmented coarray tensor is derived and used as the network input. To compress convolution kernels for efficient coarray tensor propagation, we develop a convolution kernel decomposition approach. This enables the acquisition of canonical polyadic (CP) factors containing compressed parameters. Performing decomposable convolution between the coarray tensor and the CP factors leads to resource-efficient DOA estimation. Our simulation results indicate that the proposed method conserves system resources while maintaining competitive performance.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationZheng, H, Zhou, C, Vorobyov, S, Wang, Q & Shi, Z 2023, 'Decomposed CNN for Sub-Nyquist Tensor-Based 2-D DOA Estimation', IEEE Signal Processing Letters, vol. 30, pp. 708-712. https://doi.org/10.1109/LSP.2023.3282815en
dc.identifier.doi10.1109/LSP.2023.3282815en_US
dc.identifier.issn1070-9908
dc.identifier.issn1558-2361
dc.identifier.otherPURE UUID: c5204606-1fc9-4da7-9fb1-11cb2cc6e870en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/c5204606-1fc9-4da7-9fb1-11cb2cc6e870en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85161515120&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/170711007/SPLConv_DOA_Fin.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/133010
dc.identifier.urnURN:NBN:fi:aalto-202501171302
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Signal Processing Lettersen
dc.relation.ispartofseriesVolume 30, pp. 708-712en
dc.rightsopenAccessen
dc.rightsCC BYen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.keywordArray signal processingen_US
dc.subject.keywordCoarray tensoren_US
dc.subject.keywordConvolutionen_US
dc.subject.keywordconvolution kernel decompositionen_US
dc.subject.keywordConvolutional neural networksen_US
dc.subject.keywordDirection-of-arrival estimationen_US
dc.subject.keywordDOA estimationen_US
dc.subject.keywordEstimationen_US
dc.subject.keywordKernelen_US
dc.subject.keywordsub-Nyquist tensoren_US
dc.subject.keywordTensorsen_US
dc.titleDecomposed CNN for Sub-Nyquist Tensor-Based 2-D DOA Estimationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files