Decomposed CNN for Sub-Nyquist Tensor-Based 2-D DOA Estimation
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Zheng, Hang | en_US |
dc.contributor.author | Zhou, Chengwei | en_US |
dc.contributor.author | Vorobyov, Sergiy | en_US |
dc.contributor.author | Wang, Qing | en_US |
dc.contributor.author | Shi, Zhiguo | en_US |
dc.contributor.department | Department of Information and Communications Engineering | en |
dc.contributor.groupauthor | Sergiy Vorobyov Group | en |
dc.contributor.organization | Zhejiang University | en_US |
dc.contributor.organization | Tianjin University | en_US |
dc.date.accessioned | 2025-01-17T10:35:46Z | |
dc.date.available | 2025-01-17T10:35:46Z | |
dc.date.issued | 2023 | en_US |
dc.description | Publisher Copyright: IEEE | |
dc.description.abstract | Direction-of-arrival (DOA) estimation using sub-Nyquist tensor signals benefits from enhanced performance by extracting structural angular information with multi-dimensional sparse arrays. Although convolutional neural network (CNN) has been employed to achieve efficient DOA estimation in challenging conditions, conventional methods demand excessive memory storage and computation power to process sub-Nyquist tensor statistics. In this letter, we propose a decomposed CNN for sub-Nyquist tensor-based 2-D DOA estimation, where an augmented coarray tensor is derived and used as the network input. To compress convolution kernels for efficient coarray tensor propagation, we develop a convolution kernel decomposition approach. This enables the acquisition of canonical polyadic (CP) factors containing compressed parameters. Performing decomposable convolution between the coarray tensor and the CP factors leads to resource-efficient DOA estimation. Our simulation results indicate that the proposed method conserves system resources while maintaining competitive performance. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 5 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Zheng, H, Zhou, C, Vorobyov, S, Wang, Q & Shi, Z 2023, 'Decomposed CNN for Sub-Nyquist Tensor-Based 2-D DOA Estimation', IEEE Signal Processing Letters, vol. 30, pp. 708-712. https://doi.org/10.1109/LSP.2023.3282815 | en |
dc.identifier.doi | 10.1109/LSP.2023.3282815 | en_US |
dc.identifier.issn | 1070-9908 | |
dc.identifier.issn | 1558-2361 | |
dc.identifier.other | PURE UUID: c5204606-1fc9-4da7-9fb1-11cb2cc6e870 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/c5204606-1fc9-4da7-9fb1-11cb2cc6e870 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85161515120&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/170711007/SPLConv_DOA_Fin.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/133010 | |
dc.identifier.urn | URN:NBN:fi:aalto-202501171302 | |
dc.language.iso | en | en |
dc.publisher | IEEE | |
dc.relation.ispartofseries | IEEE Signal Processing Letters | en |
dc.relation.ispartofseries | Volume 30, pp. 708-712 | en |
dc.rights | openAccess | en |
dc.rights | CC BY | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.keyword | Array signal processing | en_US |
dc.subject.keyword | Coarray tensor | en_US |
dc.subject.keyword | Convolution | en_US |
dc.subject.keyword | convolution kernel decomposition | en_US |
dc.subject.keyword | Convolutional neural networks | en_US |
dc.subject.keyword | Direction-of-arrival estimation | en_US |
dc.subject.keyword | DOA estimation | en_US |
dc.subject.keyword | Estimation | en_US |
dc.subject.keyword | Kernel | en_US |
dc.subject.keyword | sub-Nyquist tensor | en_US |
dc.subject.keyword | Tensors | en_US |
dc.title | Decomposed CNN for Sub-Nyquist Tensor-Based 2-D DOA Estimation | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | acceptedVersion |