Electroluminescent cooling in intracavity light emitters

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

1-8

Series

OPTICAL AND QUANTUM ELECTRONICS, Volume 50, issue 1

Abstract

We develop a coupled electronic charge and photon transport simulation model to allow for deeper analysis of our recent experimental studies of intracavity double diode structures (DDSs). The studied structures consist of optically coupled AlGaAs/GaAs double heterojunction light emitting diode (LED) and GaAs p–n-homojunction photodiode (PD) structure, integrated as a single semiconductor device. The drift–diffusion formalism for charge transport and an optical model, coupling the LED and the PD, are self-consistently applied to complement our experimental work on the evaluation of the efficiency of these DDSs. This is to understand better their suitability for electroluminescent cooling (ELC) demonstration, and shed further light on electroluminescence and optical energy transfer in the structures. The presented results emphasize the adverse effect of non-radiative recombination on device efficiency, which is the main obstacle for achieving ELC in III-V semiconductors.

Description

| openaire: EC/H2020/638173/EU//iTPX

Other note

Citation

Sadi , T , Kivisaari , P , Tiira , J , Radevici , I , Haggren , T & Oksanen , J 2018 , ' Electroluminescent cooling in intracavity light emitters : modeling and experiments ' , Optical and Quantum Electronics , vol. 50 , no. 1 , 18 , pp. 1-8 . https://doi.org/10.1007/s11082-017-1285-z