Improving Building Temperature Forecasting: A Data-driven Approach with System Scenario Clustering

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZhao, Dafang
dc.contributor.authorChen, Zheng
dc.contributor.authorLi, Zhengmao
dc.contributor.authorYuan, Xiaolei
dc.contributor.authorTaniguchi, Ittetsu
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorMulti-energy System Planning and Operationen
dc.contributor.groupauthorEnergy Conversion and Systemsen
dc.contributor.organizationOsaka University
dc.date.accessioned2025-01-17T10:38:33Z
dc.date.available2025-01-17T10:38:33Z
dc.date.issued2024
dc.descriptionPublisher Copyright: © 2024 IEEE.
dc.description.abstractHeat, Ventilation and Air Conditioning (HVAC) systems play a critical role in maintaining a comfortable thermal environment and cost approximately 40% of primary energy usage in the building sector. For smart energy management in buildings, usage patterns and their resulting profiles allow the improvement of control systems with prediction capabilities. However, for large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem. In this paper, a new data-driven room temperature prediction model is proposed based on the k-means clustering method. The proposed data-driven temperature prediction approach extracts the system operation feature through historical data analysis and further simplifies the system-level model to improve generalization and computational efficiency. We evaluate the proposed approach in the real world. The results demonstrated that our approach can significantly reduce modeling time without reducing prediction accuracy.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.mimetypeapplication/pdf
dc.identifier.citationZhao, D, Chen, Z, Li, Z, Yuan, X & Taniguchi, I 2024, Improving Building Temperature Forecasting: A Data-driven Approach with System Scenario Clustering. in 2024 IEEE Power and Energy Society General Meeting, PESGM 2024. IEEE Power and Energy Society General Meeting, IEEE, IEEE Power and Energy Society General Meeting, Seattle, Washington, United States, 21/07/2024. https://doi.org/10.1109/PESGM51994.2024.10689186en
dc.identifier.doi10.1109/PESGM51994.2024.10689186
dc.identifier.isbn979-8-3503-8183-2
dc.identifier.issn1944-9925
dc.identifier.issn1944-9933
dc.identifier.otherPURE UUID: f780711c-0625-415c-8a1d-01aa0cc54c8c
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f780711c-0625-415c-8a1d-01aa0cc54c8c
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85207405143&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/170750564/conference_101719.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/133027
dc.identifier.urnURN:NBN:fi:aalto-202501171319
dc.language.isoenen
dc.relation.ispartofIEEE Power and Energy Society General Meetingen
dc.relation.ispartofseries2024 IEEE Power and Energy Society General Meeting, PESGM 2024en
dc.relation.ispartofseriesIEEE Power and Energy Society General Meetingen
dc.rightsopenAccessen
dc.subject.keywordclustering
dc.subject.keyworddata-driven
dc.subject.keywordHVAC
dc.subject.keywordsymbolic regression
dc.subject.keywordsystem scenario
dc.titleImproving Building Temperature Forecasting: A Data-driven Approach with System Scenario Clusteringen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files