Steady states of the Parker instability
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
17
Series
Monthly Notices of the Royal Astronomical Society, Volume 525, issue 4, pp. 5597-5613
Abstract
We study the linear properties, non-linear saturation, and a steady, strongly non-linear state of the Parker instability in galaxies. We consider magnetic buoyancy and its consequences with and without cosmic rays. Cosmic rays are described using the fluid approximation with anisotropic, non-Fickian diffusion. To avoid unphysical constraints on the instability (such as boundary conditions often used to specify an unstable background state), non-ideal magnetohydrodynamic equations are solved for deviations from a background state representing an unstable magnetohydrostatic equilibrium. We consider isothermal gas and neglect rotation. The linear evolution of the instability is in broad agreement with earlier analytical and numerical models; but we show that most of the simplifying assumptions of the earlier work do not hold, such that they provide only a qualitative rather than quantitative picture. In its non-linear stage the instability has significantly altered the background state from its initial state. Vertical distributions of both magnetic field and cosmic rays are much wider, the gas layer is thinner, and the energy densities of both magnetic field and cosmic rays are much reduced. The spatial structure of the non-linear state differs from that of any linear modes. A transient gas outflow is driven by the weakly non-linear instability as it approaches saturation.Description
Other note
Citation
Tharakkal, D, Shukurov, A, Gent, F A, Sarson, G R, Snodin, A P & Rodrigues, L F S 2023, 'Steady states of the Parker instability', Monthly Notices of the Royal Astronomical Society, vol. 525, no. 4, pp. 5597-5613. https://doi.org/10.1093/mnras/stad2610