Explicit Correlation Amplifiers for Finding Outlier Correlations in Deterministic Subquadratic Time

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2020-11

Major/Subject

Mcode

Degree programme

Language

en

Pages

32

Series

Algorithmica, Volume 82, issue 11, pp. 3306-3337

Abstract

We derandomize Valiant’s (J ACM 62, Article 13, 2015) subquadratic-time algorithm for finding outlier correlations in binary data. This demonstrates that it is possible to perform a deterministic subquadratic-time similarity join of high dimensionality. Our derandomized algorithm gives deterministic subquadratic scaling essentially for the same parameter range as Valiant’s randomized algorithm, but the precise constants we save over quadratic scaling are more modest. Our main technical tool for derandomization is an explicit family of correlation amplifiers built via a family of zigzag-product expanders by Reingold et al. (Ann Math 155(1):157–187, 2002). We say that a function f: { - 1 , 1 } d→ { - 1 , 1 } D is a correlation amplifier with threshold 0 ≤ τ≤ 1 , error γ≥ 1 , and strength p an even positive integer if for all pairs of vectors x, y∈ { - 1 , 1 } d it holds that (i) | ⟨ x, y⟩ | < τd implies | ⟨ f(x) , f(y) ⟩ | ≤ (τγ) pD; and (ii) | ⟨ x, y⟩ | ≥ τd implies (⟨x,y⟩γd)pD≤⟨f(x),f(y)⟩≤(γ⟨x,y⟩d)pD.

Description

Keywords

Correlation, Derandomization, Expander graph, Outlier, Similarity search

Other note

Citation

Karppa, M, Kaski, P, Kohonen, J & Ó Catháin, P 2020, ' Explicit Correlation Amplifiers for Finding Outlier Correlations in Deterministic Subquadratic Time ', Algorithmica, vol. 82, no. 11, pp. 3306-3337 . https://doi.org/10.1007/s00453-020-00727-1