NWChem: Past, present, and future

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

26

Series

The Journal of chemical physics, Volume 152, issue 18

Abstract

Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.

Description

Keywords

Other note

Citation

Aprà, E, Bylaska, E J, de Jong, W A, Govind, N, Kowalski, K, Straatsma, T P, Valiev, M, van Dam, H J J, Alexeev, Y, Anchell, J, Anisimov, V, Aquino, F W, Atta-Fynn, R, Autschbach, J, Bauman, N P, Becca, J C, Bernholdt, D E, Bhaskaran-Nair, K, Bogatko, S, Borowski, P, Boschen, J, Brabec, J, Bruner, A, Cauët, E, Chen, Y, Chuev, G N, Cramer, C J, Daily, J, Deegan, M J O, Dunning, T H, Dupuis, M, Dyall, K G, Fann, G I, Fischer, S A, Fonari, A, Früchtl, H, Gagliardi, L, Garza, J, Gawande, N, Ghosh, S, Glaesemann, K, Götz, A W, Hammond, J, Helms, V, Hermes, E D, Hirao, K, Hirata, S, Jacquelin, M, Jensen, L, Johnson, B G, Jónsson, H, Kendall, R A, Klemm, M, Kobayashi, R, Konkov, V, Krishnamoorthy, S, Krishnan, M, Lin, Z, Lins, R D, Littlefield, R J, Logsdail, A J, Lopata, K, Marenich, A V, Martin Del Campo, J, Mejia-Rodriguez, D, Moore, J E, Mullin, J M, Nakajima, T, Nascimento, D R, Nichols, J A, Nichols, P J, Nieplocha, J, Otero-de-la-Roza, A, Palmer, B, Panyala, A, Pirojsirikul, T, Peng, B, Peverati, R, Pittner, J, Pollack, L, Sadayappan, P, Schatz, G C, Shelton, W A, Silverstein, D W, Smith, D M A, Soares, T A, Song, D, Swart, M, Taylor, H L, Thomas, G S, Tipparaju, V, Truhlar, D G, Tsemekhman, K, Van Voorhis, T, Vázquez-Mayagoitia, Verma, P, Villa, O, Vishnu, A, Vogiatzis, K D, Wang, D, Weare, J H, Williamson, M J, Windus, T L, Woliński, K, Wong, A T, Wu, Q, Yang, C, Yu, Q, Zacharias, M, Zhang, Z, Zhao, Y, Harrison, R J & Ma, W 2020, 'NWChem : Past, present, and future', The Journal of chemical physics, vol. 152, no. 18, 184102. https://doi.org/10.1063/5.0004997