Cost-optimal energy performance measures in a new daycare building in cold climate
Loading...
Access rights
openAccess
acceptedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
19
Series
International Journal of Sustainable Energy, Volume 38, issue 2, pp. 104-122
Abstract
New municipal service buildings must be energy effective, and cost-optimality is one of the criteria for selecting the suitable energy performance improvement measures. A daycare building in a cold climate was studied by means of simulation-based, multi-objective optimisation. Using a genetic algorithm, both target energy use and life-cycle cost of the selected measures were minimised. It was found that extensive insulation of the building envelope is not a cost-optimal method to reduce the daycare building energy use. Improving energy efficiency of the ventilation system, utilising solar energy on-site and employing a light control strategy are preferable ways of improving the building energy performance. Ground-source heat pump is a more cost-optimal heating system for the daycare building than district heating. The cost-optimal sizing of the heat pump is small, only 28% of the required maximum heating power. Abbreviations: AHU: air handling unit; CAV: constant air volume; COMBI: comprehensive development of nearly zero-energy municipal service buildings; COP: coefficient of performance; DH: district heating; DHW: domestic hot water; EPBD: energy performance of buildings directive; EU: European Union; FINVAC: Finnish Association of HVAC Societies; GSHP: ground-source heat pump; HRU: heat recovery unit; IDA ICE: IDA Indoor Climate and Energy; LED: light-emitting diode; MOBO: multi-objective building optimisation tool; NSGA-II: Non-dominated Sorting Genetic Algorithm II; nZEB: nearly zero-energy building; PV: photovoltaic; TRY: test reference year; VAV: variable air volume; ZEB: zero-energy buildingDescription
Other note
Citation
Sankelo, P, Jokisalo, J, Nyman, J, Vinha, J & Sirén, K 2019, 'Cost-optimal energy performance measures in a new daycare building in cold climate', International Journal of Sustainable Energy, vol. 38, no. 2, pp. 104-122. https://doi.org/10.1080/14786451.2018.1448398