Experimental investigation on the use of selenice natural bitumen as an additive for pavement materials
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
35
Series
Materials, Volume 14, issue 4, pp. 1-35
Abstract
As a good asphalt modifier, natural asphalt has been the focus of more attention because of its low price and ability to improve the performance of modified asphalt. In this paper, the incor-poration of a natural asphalt binder in the production of bituminous materials for pavement application in China was experimentally investigated to evaluate the feasibility of such a process and its potential benefits in terms of performance. For this purpose, an asphalt binder conventionally used in the south of China was blended with various percentages of a hard natural binder obtained from the region of Selenice in Albania. The content of Selenice natural bitumen (SNB) was 80.5%, having high molecular weight and the advantages of good stability and compatibility with virgin asphalt. The physical, rheological, and mechanical properties, as well as the modification mechanism of the binder and corresponding asphalt mixture, were evaluated in the laboratory. It was observed that the hard binder improved the response of the binder blend at high and intermediate temperature; this reflected a better stability, improved moisture susceptibility, and enhanced rutting resistance of the mixture. Fluorescence microscopy showed that after dissolving, the size of the SNB modifier became smaller and its distribution was uneven, presenting three forms, granular, agglomerated, and flocculent properties. Chemical test results showed that the modification mechanism of SNB was mainly related to the enhancement of hydrogen bonds and Van der Waals forces caused by sulfoxide and carbonyl along with the stress concentration caused by silica particles. Molecular composition revealed that the proportion of middle molecules has reduced while the proportion of large molecules has increased. It is considered that SNB is a promising low-priced natural modifier with excellent rutting resistance properties. Future research will be focused on the economic analy-sis, pavement life cycle assessment of SNB modified asphalt, and its application in perpetual pave-ments.Description
Other note
Citation
Hu, C, Mai, Y, Falchetto, A C & Tartari, E 2021, 'Experimental investigation on the use of selenice natural bitumen as an additive for pavement materials', Materials, vol. 14, no. 4, 1023, pp. 1-35. https://doi.org/10.3390/ma14041023