Video-Language Critic : Transferable Reward Functions for Language-Conditioned Robotics
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
22
Series
Transactions on Machine Learning Research, Volume 2025, pp. 1-22
Abstract
Natural language is often the easiest and most convenient modality for humans to specify tasks for robots. However, learning to ground language to behavior typically requires impractical amounts of diverse, language-annotated demonstrations collected on each target robot. In this work, we aim to separate the problem of what to accomplish from how to accomplish it, as the former can benefit from substantial amounts of external observation-only data, and only the latter depends on a specific robot embodiment. To this end, we propose Video-Language Critic, a reward model that can be trained on readily available cross-embodiment data using contrastive learning and a temporal ranking objective, and use it to score behavior traces from a separate actor. When trained on Open X-Embodiment data, our reward model enables 2x more sample-efficient policy training on Meta-World tasks than a sparse reward only, despite a significant domain gap. Using in-domain data but in a challenging task generalization setting on Meta-World, we further demonstrate more sample-efficient training than is possible with prior language-conditioned reward models that are either trained with binary classification, use static images, or do not leverage the temporal information present in video data.1.Description
Publisher Copyright: © 2025, Transactions on Machine Learning Research.
Keywords
Other note
Citation
Alakuijala, M, McLean, R, Woungang, I, Farsad, N, Kaski, S, Marttinen, P & Yuan, K 2025, 'Video-Language Critic : Transferable Reward Functions for Language-Conditioned Robotics', Transactions on Machine Learning Research, vol. 2025, pp. 1-22. < https://openreview.net/forum?id=jJOVpnNrEp >