Multi-patch variational differential quadrature method for shear-deformable strain gradient plates

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTorabi, Jalal
dc.contributor.authorNiiranen, Jarkko
dc.contributor.authorAnsari, Reza
dc.contributor.departmentDepartment of Civil Engineering
dc.contributor.departmentGuilan University
dc.date.accessioned2022-04-28T08:09:36Z
dc.date.available2022-04-28T08:09:36Z
dc.date.issued2022-05-30
dc.descriptionPublisher Copyright: © 2022 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.
dc.description.abstractThe integration of generalized differential quadrature techniques and finite element (FE) methods has been developed during the past decade for engineering problems within classical continuum theories. Hence, the main objective of the present study is to propose a novel numerical strategy called the multi-patch variational differential quadrature (VDQ) method to model the structural behavior of plate structures obeying the shear deformation plate theory within the strain gradient elasticity theory. The idea is to divide the two-dimensional solution domain of the plate model into sub-domains, called patches, and then to apply the VDQ method along with the FE mapping technique for each patch. The formulation is presented in a weak form and due to the C1-continuity requirements the corresponding compatibility conditions are applied through the patch interfaces. The Lagrange multiplier technique and the penalty method are implemented to apply the higher-order compatibility conditions and boundary conditions, respectively. To show the efficiency of the proposed method, numerical results are provided for plate structures with both regular and irregular solution domains. The provided numerical examples demonstrate the applicability and accuracy of the method in predicting the bending and vibration behavior of plate structures following the higher-order plate model.en
dc.description.versionPeer revieweden
dc.format.extent29
dc.format.extent2309-2337
dc.format.mimetypeapplication/pdf
dc.identifier.citationTorabi , J , Niiranen , J & Ansari , R 2022 , ' Multi-patch variational differential quadrature method for shear-deformable strain gradient plates ' , International Journal for Numerical Methods in Engineering , vol. 123 , no. 10 , pp. 2309-2337 . https://doi.org/10.1002/nme.6939en
dc.identifier.doi10.1002/nme.6939
dc.identifier.issn0029-5981
dc.identifier.issn1097-0207
dc.identifier.otherPURE UUID: 71d3e3fa-2f96-495b-811e-595ce38f4bae
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/71d3e3fa-2f96-495b-811e-595ce38f4bae
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85125081970&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/81996092/Multi_patch_variational_differential_quadrature_method_for_shear_deformable_strain_gradient_plates.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/114041
dc.identifier.urnURN:NBN:fi:aalto-202204282928
dc.language.isoenen
dc.publisherJOHN WILEY & SONS
dc.relation.ispartofseriesInternational Journal for Numerical Methods in Engineeringen
dc.relation.ispartofseriesVolume 123, issue 10en
dc.rightsopenAccessen
dc.subject.keywordbending analysis
dc.subject.keywordfirst-order shear deformation plate theory
dc.subject.keywordmulti-patch technique
dc.subject.keywordstrain gradient elasticity
dc.subject.keywordvariational differential quadrature
dc.subject.keywordvibration analysis
dc.titleMulti-patch variational differential quadrature method for shear-deformable strain gradient platesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files