A Compact WSGG Formulation to Account for Inhomogeneity of H2O-CO2 Mixtures in Combustion Systems
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
2022-07-01
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
Series
JOURNAL OF HEAT TRANSFER: TRANSACTIONS OF THE ASME, Volume 144, issue 7
Abstract
An alternative weighted-sum-of-gray-gases (WSGG) model is proposed with a single set of constant pressure-based absorption coefficients that accounts for different mole fraction ratios (MRs) of H2O-CO2. The method requires no further interpolation, which in turn brings not only less uncertainty into the model but also simplifies its use. The hitemp2010 spectral database along with the line-by-line (LBL) integration is employed to generate a set of accurate total emissivities from which the WSGG coefficients are fitted. The fitting procedure employs a novel formulation to account for the MR dependence, leading to a more compact set of WSGG correlations when compared to the alternatives available in the literature. The new formulation takes advantage of the weak interdependence of temperature and molar fraction ratio in the weight factors and therefore separates their effects by two independent correlations. As oxy-fired combustion usually occurs in two distinct scenarios, dry- and wet-flue gas recirculation (FGR), the paper also proposes two other sets of coefficients intended to support the MR ranges corresponding to these specific conditions. Comparisons made against the benchmark LBL integration and other WSGG models, for one- and three-dimensional calculations, show the satisfactory level of accuracy of the proposed sets of correlations. In particular, the three-dimensional test case illustrates that the new model is also applicable to conditions observed in air-fuel combustion.Description
Keywords
spectral radiation modeling, weighted-sum-of-gray-gases model, line-by-line integration, air-fuel combustion, oxy-fuel combustion, GRAY-GASES MODEL, SPECTRUM K-DISTRIBUTION, OXY-FUEL COMBUSTION, WEIGHTED-SUM, HEAT-TRANSFER, TOTAL EMISSIVITIES, TOTAL PRESSURE, H2O, CO2, TEMPERATURE
Other note
Citation
Balbino Selhorst, A H, Fraga, G C, Coelho, F R, Bordbar, H & Ramos Franca, F H 2022, ' A Compact WSGG Formulation to Account for Inhomogeneity of H2O-CO2 Mixtures in Combustion Systems ', Journal of Heat Transfer: Transactions of the ASME, vol. 144, no. 7, 071301 . https://doi.org/10.1115/1.4054239