Aspen plus-based techno-economic assessment of a solar-driven calcium looping CO2 capture system integrated with CaO sorbent reactivation
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
14
Series
Energy Conversion and Management X, Volume 23
Abstract
Given the gradual nature of the energy transition, retrofitting coal-fired power plants with carbon capture technology is crucial. The calcium looping (CaL) process is a promising solution, with challenges like absorbent deactivation and reduced thermal efficiency mitigated by absorbent reactivation and heat recovery systems. This study evaluated the techno-economic feasibility of integrating a novel wet extraction and precipitation process for absorbent reactivation within a solar-assisted CaL system, alongside an existing coal power plant. The process incorporated a secondary steam cycle and an ammonia absorption chiller for enhanced heat recovery and district cooling. The integrated project could increase daily power generation by 50% and reduce CO2 emissions from 820.4 g/kWh to 54.5 g/kWh. Over its lifespan, the reactivation facility could reduce limestone extraction by 21 Mt with 90% capture efficiency. With a levelized cost of electricity (LCOE) of 116.1 €/MWh and breakeven electricity selling price (BESP) of 56.6 €/MWh, the system demonstrated promising commercial viability, with the reactor and concentrated solar heating (CSH) system making up over 60% of investment costs. CSH cost and solar abundance were identified as key factors, indicating potential feasibility even in higher latitude regions. At CO2 revenues of 150 €/t, a stand-alone capture project can break even based solely on CO2 sales, demonstrating its potential for expansion to other areas. A case study highlighted the benefits of integrating absorbent reactivation and an ammonia absorption chiller, improving both economics and carbon capture efficiency. The study also confirmed the viability of solar-assisted projects in high-latitude regions, with optimistic future CO2 revenues and advancements in carbon capture technology enhancing feasibility.Description
Publisher Copyright: © 2024 The Authors
Other note
Citation
Jiang, D, Li, S, Santasalo-Aarnio, A & Järvinen, M 2024, 'Aspen plus-based techno-economic assessment of a solar-driven calcium looping CO 2 capture system integrated with CaO sorbent reactivation', Energy Conversion and Management X, vol. 23, 100673. https://doi.org/10.1016/j.ecmx.2024.100673