Characterising the notch root radii and analyses of stress concentration factors near the dominant valleys of rough surface profiles

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorGebrehiwot, Silas Z.en_US
dc.contributor.authorEspinosa-Leal, Leonardoen_US
dc.contributor.authorRemes, Heikkien_US
dc.contributor.authorVermunt, Marinusen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorMarine and Arctic Technologyen
dc.contributor.organizationArcada University of Applied Sciencesen_US
dc.contributor.organizationFontys University of Applied Sciencesen_US
dc.date.accessioned2023-08-11T07:21:26Z
dc.date.available2023-08-11T07:21:26Z
dc.date.issued2023en_US
dc.descriptionPublisher Copyright: © 2023 The Authors.
dc.description.abstractSurface roughness is one of the key surface integrity factors affecting the strength and fatigue life of components. Stress concentrations occur due to the randomness of the surface profiles. The presence of a dominant valley, a complex geometry and interacting effects exasperate the severity of the stress concentrations. To estimate the theoretical stress concentration factor (SCF) at the valley, the notch root radius should be estimated carefully. We propose an effective method for estimating the root radius of the deepest valley using numerical derivative techniques. The surface roughness of a carefully sanded Alumec 89 block was measured using SJ-400 tester. The 1-D roughness data was used first to evaluate the root radius of the deepest valleys and then, estimate the SCF using analytical and computational methods. We used 2-D finite element (FE) models under uniaxial tension for the computational analyses. The validity of our method is based on determining the SCF using different theoretical methods and comparing the results to the FE calculations. The theoeritical estimations are made using the Neuber, Inglis and Arola-Ramulu approaches, whereas COMSOL Multiphysics is used for the FE analyses. Comparing the theoeritical methods with the FE calculations, the Arola-Ramulu approach was better, with a maximum of 16.3 % error. The minimum deviations can be explained by the model containing parameters such as Ry, Rz and Ra which are inherent to the roughness profile of the material.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.extent51-61
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationGebrehiwot, S Z, Espinosa-Leal, L, Remes, H & Vermunt, M 2023, ' Characterising the notch root radii and analyses of stress concentration factors near the dominant valleys of rough surface profiles ', Rakenteiden mekaniikka, vol. 56, no. 2, pp. 51-61 . https://doi.org/10.23998/rm.124815en
dc.identifier.doi10.23998/rm.124815en_US
dc.identifier.issn0783-6104
dc.identifier.issn1797-5301
dc.identifier.otherPURE UUID: 36784abf-dc86-4082-a073-75d6a140f28den_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/36784abf-dc86-4082-a073-75d6a140f28den_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85164717537&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/117891976/124815_Artikkelin_teksti_285637_2_10_20230612.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/122343
dc.identifier.urnURN:NBN:fi:aalto-202308114692
dc.language.isoenen
dc.publisherRakenteiden mekaniikan seura ry
dc.relation.ispartofseriesRakenteiden mekaniikkaen
dc.relation.ispartofseriesVolume 56, issue 2en
dc.rightsopenAccessen
dc.subject.keywordfatigue notch factoren_US
dc.subject.keywordroot radiusen_US
dc.subject.keywordstress concentration factoren_US
dc.subject.keywordsurface roughnessen_US
dc.titleCharacterising the notch root radii and analyses of stress concentration factors near the dominant valleys of rough surface profilesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files