A Statistical Modeling Methodology for Long-Term Wind Generation and Power Ramp Simulations in New Generation Locations
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
2018-09-14
Major/Subject
Mcode
Degree programme
Language
en
Pages
18
1-18
1-18
Series
Energies, Volume 2018, issue 11
Abstract
In future power systems, a large share of the energy will be generated with wind power plants (WPPs) and other renewable energy sources. With the increasing wind power penetration, the variability of the net generation in the system increases. Consequently, it is imperative to be able to assess and model the behavior of the WPP generation in detail. This paper presents an improved methodology for the detailed statistical modeling of wind power generation from multiple new WPPs without measurement data. A vector autoregressive based methodology, which can be applied to long-term Monte Carlo simulations of existing and new WPPs, is proposed. The proposed model improves the performance of the existing methodology and can more accurately analyze the temporal correlation structure of aggregated wind generation at the system level. This enables the model to assess the impact of new WPPs on the wind power ramp rates in a power system. To evaluate the performance of the proposed methodology, it is verified against hourly wind speed measurements from six locations in Finland and the aggregated wind power generation from Finland in 2015. Furthermore, a case study analyzing the impact of the geographical distribution of WPPs on wind power ramps is included.Description
Keywords
Monte Carlo simulation, power ramps, renewable energy, vector autoregressive model, wind power generation
Other note
Citation
Ekström, J, Koivisto, M, Mellin, I, Millar, R & Lehtonen, M 2018, ' A Statistical Modeling Methodology for Long-Term Wind Generation and Power Ramp Simulations in New Generation Locations ', Energies, vol. 11, no. 9, 2442 . https://doi.org/10.3390/en11092442