A unified fracture criterion considering stress state dependent transition of failure mechanisms in bcc steels at -196 °c

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorShen, Fuhuien_US
dc.contributor.authorMünstermann, Sebastianen_US
dc.contributor.authorLian, Junheen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorAdvanced Manufacturing and Materialsen
dc.contributor.organizationRWTH Aachen Universityen_US
dc.date.accessioned2022-08-17T09:38:50Z
dc.date.available2022-08-17T09:38:50Z
dc.date.issued2022-09en_US
dc.descriptionFunding Information: thyssenkrupp Steel Europe AG is gratefully acknowledged for materials supply and financial support. Simulations were performed with computing resources granted by RWTH Aachen University under project rwth0241. Publisher Copyright: © 2022 The Author(s).
dc.description.abstractThe fracture properties of a high-strength steel with a body-centered cubic (bcc) crystal structure have been characterized at -196 °C by performing tensile tests with different specimen geometries, three-point bending tests using Charpy specimens, and fracture mechanics tests, covering a broad range of stress states under quasi-static conditions. Both strength and ductility of the bcc steel are significantly increased when the temperature is decreased from room temperature to -196 °C. Enormous plasticity occurs in the material during tensile tests using various specimens at -196 °C, while macroscopic brittle fracture takes place in high triaxiality scenarios. A stress state dependence of ductile to brittle transition properties is observed, as the failure mechanisms at -196 °C change from cleavage fracture to shear failure with decreasing stress triaxiality. A unified stress-state-dependent fracture criterion, which considers the transition of failure mechanisms, is proposed to describe the fracture properties of similar bcc materials at cryogenic temperatures. The threshold triaxiality at which the transition of failure mechanisms takes place is a material property that is determined by the strain hardening capacity and fracture strength. In addition, a probabilistic formulation relying on the extreme value distribution has been incorporated into the model to render the statistical nature of cleavage fracture.en
dc.description.versionPeer revieweden
dc.format.extent22
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationShen, F, Münstermann, S & Lian, J 2022, ' A unified fracture criterion considering stress state dependent transition of failure mechanisms in bcc steels at -196 °c ', International Journal of Plasticity, vol. 156, 103365 . https://doi.org/10.1016/j.ijplas.2022.103365en
dc.identifier.doi10.1016/j.ijplas.2022.103365en_US
dc.identifier.issn0749-6419
dc.identifier.otherPURE UUID: bb4e219a-870f-44a6-aeab-a57d5ac4a372en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/bb4e219a-870f-44a6-aeab-a57d5ac4a372en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85134890388&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/86699577/1_s2.0_S0749641922001450_main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/116098
dc.identifier.urnURN:NBN:fi:aalto-202208174915
dc.language.isoenen
dc.publisherElsevier Limited
dc.relation.ispartofseriesINTERNATIONAL JOURNAL OF PLASTICITYen
dc.relation.ispartofseriesVolume 156en
dc.rightsopenAccessen
dc.subject.keywordCleavage fractureen_US
dc.subject.keywordFracture criterionen_US
dc.subject.keywordShear fractureen_US
dc.subject.keywordStress statesen_US
dc.subject.keywordThreshold triaxialityen_US
dc.titleA unified fracture criterion considering stress state dependent transition of failure mechanisms in bcc steels at -196 °cen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files