Modeling self-organization of thin strained metallic overlayers from atomic to micron scales

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorElder, K. R.
dc.contributor.authorRossi, G.
dc.contributor.authorKanerva, P.
dc.contributor.authorSanches, F.
dc.contributor.authorYing, S-C.
dc.contributor.authorGranato, E.
dc.contributor.authorAchim, C. V.
dc.contributor.authorAla-Nissilä, Tapio
dc.contributor.departmentTeknillisen fysiikan laitosfi
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.date.accessioned2015-04-28T09:45:19Z
dc.date.available2015-04-28T09:45:19Z
dc.date.issued2013
dc.description.abstractA computational study of the self-organization of heteroepitaxial ultrathin metal films is presented. By means of a continuum complex field model, the relationship of the equilibrium surface patterns of the film to the adsorbate-substrate adhesion energy, as well as to the mismatch between the adsorbate and the substrate bulk lattice parameters, are obtained in both the tensile and the compressive regimes. Our approach captures pattern periodicities over large length scales, up to several hundreds of nm, retaining atomistic resolution. Thus, the results can be directly compared with experimental data, in particular for systems such as Cu/Ru(0001) and Ag/Cu(111). Three nontrivial, stable superstructures for the overlayer, namely, stripe, honeycomb, and triangular, are identified that closely resemble those observed experimentally. Simulations in nonequilibrium conditions are performed as well to identify metastable structural configurations and the dynamics of ordering of the overlayer.en
dc.description.versionPeer revieweden
dc.format.extent075423/1-10
dc.format.mimetypeapplication/pdfen
dc.identifier.citationElder, K. R. & Rossi, G. & Kanerva, P. & Sanches, F. & Ying, S-C. & Granato, E. & Achim, C. V. & Ala-Nissilä, Tapio. 2013. Modeling self-organization of thin strained metallic overlayers from atomic to micron scales. Physical Review B. Volume 88, Issue 7. P. 075423/1-10. ISSN 1098-0121 (printed). DOI: 10.1103/physrevb.88.075423.en
dc.identifier.doi10.1103/physrevb.88.075423
dc.identifier.issn1098-0121 (printed)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/15810
dc.identifier.urnURN:NBN:fi:aalto-201504282471
dc.language.isoenen
dc.publisherAmerican Physical Society (APS)en
dc.relation.ispartofseriesPhysical Review Ben
dc.relation.ispartofseriesVolume 88, Issue 7
dc.rights© 2013 American Physical Society (APS). http://www.aps.orgen
dc.rights.holderAmerican Physical Society (APS)
dc.subject.keywordphase-field modelingen
dc.subject.keywordthin filmen
dc.subject.keywordstrained filmen
dc.subject.keywordheteroepitaxyen
dc.subject.keywordmetal surfaceen
dc.subject.keywordnanostructuresen
dc.subject.keywordself-organizationen
dc.subject.otherPhysicsen
dc.titleModeling self-organization of thin strained metallic overlayers from atomic to micron scalesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.dcmitypetexten
dc.type.versionFinal published versionen
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A1_elder_k._r._2013.pdf
Size:
4.72 MB
Format:
Adobe Portable Document Format