Modeling self-organization of thin strained metallic overlayers from atomic to micron scales
Loading...
Access rights
© 2013 American Physical Society (APS). http://www.aps.org
URL
Journal Title
Journal ISSN
Volume Title
School of Science |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2013
Major/Subject
Mcode
Degree programme
Language
en
Pages
075423/1-10
Series
Physical Review B, Volume 88, Issue 7
Abstract
A computational study of the self-organization of heteroepitaxial ultrathin metal films is presented. By means of a continuum complex field model, the relationship of the equilibrium surface patterns of the film to the adsorbate-substrate adhesion energy, as well as to the mismatch between the adsorbate and the substrate bulk lattice parameters, are obtained in both the tensile and the compressive regimes. Our approach captures pattern periodicities over large length scales, up to several hundreds of nm, retaining atomistic resolution. Thus, the results can be directly compared with experimental data, in particular for systems such as Cu/Ru(0001) and Ag/Cu(111). Three nontrivial, stable superstructures for the overlayer, namely, stripe, honeycomb, and triangular, are identified that closely resemble those observed experimentally. Simulations in nonequilibrium conditions are performed as well to identify metastable structural configurations and the dynamics of ordering of the overlayer.Description
Keywords
phase-field modeling, thin film, strained film, heteroepitaxy, metal surface, nanostructures, self-organization
Other note
Citation
Elder, K. R. & Rossi, G. & Kanerva, P. & Sanches, F. & Ying, S-C. & Granato, E. & Achim, C. V. & Ala-Nissilä, Tapio. 2013. Modeling self-organization of thin strained metallic overlayers from atomic to micron scales. Physical Review B. Volume 88, Issue 7. P. 075423/1-10. ISSN 1098-0121 (printed). DOI: 10.1103/physrevb.88.075423.