Evolving-Graph Gaussian Processes

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBlanco-Mulero, Daviden_US
dc.contributor.authorHeinonen, Markusen_US
dc.contributor.authorKyrki, Villeen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorIntelligent Roboticsen
dc.contributor.groupauthorProbabilistic Machine Learningen
dc.contributor.groupauthorProfessorship Kaski Samuelen
dc.contributor.groupauthorProfessorship Lähdesmäki Harrien
dc.date.accessioned2021-08-25T06:51:19Z
dc.date.available2021-08-25T06:51:19Z
dc.date.issued2021-07en_US
dc.description.abstractGraph Gaussian Processes (GGPs) provide a dataefficient solution on graph structured domains. Existing approaches have focused on static structures, whereas many real graph data represent a dynamic structure, limiting the applications of GGPs. To overcome this we propose evolvingGraph Gaussian Processes (e-GGPs). The proposed method is capable of learning the transition function of graph vertices over time with a neighbourhood kernel to model the connectivity and interaction changes between vertices. We assess the performance of our method on time-series regression problems where graphs evolve over time. We demonstrate the benefits of e-GGPs over static graph Gaussian Process approaches.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBlanco-Mulero, D, Heinonen, M & Kyrki, V 2021, ' Evolving-Graph Gaussian Processes ', Paper presented at International Conference on Machine Learning: Time Series Workshop, Virtual, Online, 24/07/2021 - 24/07/2021 . < https://arxiv.org/abs/2106.15127 >en
dc.identifier.otherPURE UUID: 3f2dfaad-dce8-49db-9d8b-e1fb09189533en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/3f2dfaad-dce8-49db-9d8b-e1fb09189533en_US
dc.identifier.otherPURE LINK: https://github.com/dblanm/evolving-ggpen_US
dc.identifier.otherPURE LINK: https://arxiv.org/abs/2106.15127en_US
dc.identifier.otherPURE LINK: http://roseyu.com/time-series-workshop/submissions/2021/TSW-ICML2021_paper_21.pdfen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/66231149/TSW_ICML2021_paper_21.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/109123
dc.identifier.urnURN:NBN:fi:aalto-202108258360
dc.language.isoenen
dc.relation.ispartofInternational Conference on Machine Learningen
dc.rightsopenAccessen
dc.subject.keywordgaussian processen_US
dc.subject.keywordTime seriesen_US
dc.subject.keywordGraph-based learningen_US
dc.subject.keywordprobabilistic modelsen_US
dc.titleEvolving-Graph Gaussian Processesen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion
Files