The extreme red excess in blazar ultraviolet broad emission lines

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2020-11-01
Major/Subject
Mcode
Degree programme
Language
en
Pages
28
Series
Astrophysical Journal, Volume 903, issue 1
Abstract
We present a study of quasars with very redward asymmetric (RA) ultraviolet (UV) broad emission lines (BELs). An excess of redshifted emission has been previously shown to occur in the BELs of radio-loud quasars and is most extreme in certain blazars. Paradoxically, blazars are objects that are characterized by a highly relativistic blueshifted outflow toward Earth. We show that the red emitting gas resides in a very broad component (VBC) that is typical of Population B quasars that are defined by a wide Hβ BEL profile. Empirically, we find that RA BEL blazars have both low Eddington rates (<1%) and an inordinately large (order unity) ratio of long-term time-averaged jet power to accretion luminosity. The latter circumstance has been previously shown to be associated with a depressed extreme UV ionizing continuum. Both properties conspire to produce a low flux of ionizing photons, two orders of magnitude less than typical Population B quasars. We use CLOUDY models to demonstrate that a weak ionizing flux is required for gas near the central black hole to be optimally ionized to radiate BELs with high efficiency (most quasars overionize nearby gas, resulting in low radiative efficiency). The large gravitational redshift and transverse Doppler shift result in a VBC that is redshifted by ∼2000–5000 km s−1 with a correspondingly large line width. The RA BELs result from an enhanced efficiency (relative to typical Population B quasars) to produce a luminous, redshifted VBC near the central black hole.
Description
Keywords
Other note
Citation
Punsly , B , Marziani , P , Berton , M & Kharb , P 2020 , ' The extreme red excess in blazar ultraviolet broad emission lines ' , The Astrophysical Journal , vol. 903 , no. 1 , 44 . https://doi.org/10.3847/1538-4357/abb950