An overview of 38 least squares–based frameworks for structural damage tomography

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSmyl, Dannyen_US
dc.contributor.authorBossuyt, Svenen_US
dc.contributor.authorAhmad, Waqasen_US
dc.contributor.authorVavilov, Antonen_US
dc.contributor.authorLiu, Dongen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorAdvanced Manufacturing and Materialsen
dc.contributor.organizationDepartment of Energy and Mechanical Engineeringen_US
dc.contributor.organizationUniversity of Science and Technology of Chinaen_US
dc.date.accessioned2019-06-03T14:16:04Z
dc.date.available2019-06-03T14:16:04Z
dc.date.issued2019-04-15en_US
dc.description| openaire: EC/FP7/339380/EU//ALEM
dc.description.abstractThe ability to reliably detect damage and intercept deleterious processes, such as cracking, corrosion, and plasticity are central themes in structural health monitoring. The importance of detecting such processes early on lies in the realization that delays may decrease safety, increase long-term repair/retrofit costs, and degrade the overall user experience of civil infrastructure. Since real structures exist in more than one dimension, the detection of distributed damage processes also generally requires input data from more than one dimension. Often, however, interpretation of distributed data—alone—offers insufficient information. For this reason, engineers and researchers have become interested in stationary inverse methods, for example, utilizing distributed data from stationary or quasi-stationary measurements for tomographic imaging structures. Presently, however, there are barriers in implementing stationary inverse methods at the scale of built civil structures. Of these barriers, a lack of available straightforward inverse algorithms is at the forefront. To address this, we provide 38 least-squares frameworks encompassing single-state, two-state, and joint tomographic imaging of structural damage. These regimes are then applied to two emerging structural health monitoring imaging modalities: Electrical Resistance Tomography and Quasi-Static Elasticity Imaging. The feasibility of the regimes are then demonstrated using simulated and experimental data.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSmyl, D, Bossuyt, S, Ahmad, W, Vavilov, A & Liu, D 2019, ' An overview of 38 least squares–based frameworks for structural damage tomography ', Structural Health Monitoring . https://doi.org/10.1177/1475921719841012en
dc.identifier.doi10.1177/1475921719841012en_US
dc.identifier.issn1475-9217
dc.identifier.issn1741-3168
dc.identifier.otherPURE UUID: 98423b07-0c84-4f6c-b7a1-0544d0c2ebdben_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/98423b07-0c84-4f6c-b7a1-0544d0c2ebdben_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85064674004&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/33778734/ENG_Smyl_et_al_An_overview_of_38_Structural_Health_Monitoring.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/38325
dc.identifier.urnURN:NBN:fi:aalto-201906033410
dc.language.isoenen
dc.publisherSAGE Publications Ltd
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/339380/EU//ALEMen_US
dc.relation.ispartofseriesStructural Health Monitoringen
dc.rightsopenAccessen
dc.subject.keywordElasticity imagingen_US
dc.subject.keywordelectrical imagingen_US
dc.subject.keywordinverse problemsen_US
dc.subject.keywordstructural health monitoringen_US
dc.titleAn overview of 38 least squares–based frameworks for structural damage tomographyen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files