Inferring the strength of social ties: A community-driven approach

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorRozenshtein, Polinaen_US
dc.contributor.authorTatti, Nikolajen_US
dc.contributor.authorGionis, Aristidesen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorAdj. Prof. Gionis Aris groupen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.groupauthorMyllymäki Petri group (HIIT)en
dc.date.accessioned2018-09-06T10:16:07Z
dc.date.available2018-09-06T10:16:07Z
dc.date.issued2017-08-13en_US
dc.description| openaire: EC/H2020/654024/EU//SoBigData
dc.description.abstractOnline social networks are growing and becoming denser. The social connections of a given person may have very high variability: from close friends and relatives to acquaintances to people who hardly know. Inferring the strength of social ties is an important ingredient for modeling the interaction of users in a network and understanding their behavior. Furthermore, the problem has applications in computational social science, viral marketing, and people recommendation. In this paper we study the problem of inferring the strength of social ties in a given network. Our work is motivated by a recent approach [27], which leverages the strong triadic closure (STC) principle, a hypothesis rooted in social psychology [13]. To guide our inference process, in addition to the network structure, we also consider as input a collection of tight communities. Those are sets of vertices that we expect to be connected via strong ties. Such communities appear in different situations, e.g., when being part of a community implies a strong connection to one of the existing members. We consider two related problem formalizations that reflect the assumptions of our setting: small number of STC violations and strong-tie connectivity in the input communities. We show that both problem formulations are NP-hard. We also show that one problem formulation is hard to approximate, while for the second we develop an algorithm with approximation guarantee. We validate the proposed method on real-world datasets by comparing with baselines that optimize STC violations and community connectivity separately.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.extent1017-1025
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationRozenshtein, P, Tatti, N & Gionis, A 2017, Inferring the strength of social ties : A community-driven approach . in KDD 2017 - Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . vol. Part F129685, ACM, pp. 1017-1025, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 13/08/2017 . https://doi.org/10.1145/3097983.3098199en
dc.identifier.doi10.1145/3097983.3098199en_US
dc.identifier.isbn9781450348874
dc.identifier.otherPURE UUID: 3ddd2e68-6999-4641-95bb-82d63e069da5en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/3ddd2e68-6999-4641-95bb-82d63e069da5en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85029082118&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/26625687/strong_backbone.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/33850
dc.identifier.urnURN:NBN:fi:aalto-201809064961
dc.language.isoenen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/654024/EU//SoBigDataen_US
dc.relation.ispartofACM SIGKDD International Conference on Knowledge Discovery and Data Miningen
dc.relation.ispartofseriesKDD 2017 - Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Miningen
dc.relation.ispartofseriesVolume Part F129685en
dc.rightsopenAccessen
dc.subject.keywordApproximation algorithmsen_US
dc.subject.keywordNetwork inferenceen_US
dc.subject.keywordSocial network analysisen_US
dc.subject.keywordStrong triadic closureen_US
dc.titleInferring the strength of social ties: A community-driven approachen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files