Variational Fourier Features for Gaussian Processes

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2018
Major/Subject
Mcode
Degree programme
Language
en
Pages
52
1-52
Series
Journal of Machine Learning Research, Volume 18, issue 1
Abstract
This work brings together two powerful concepts in Gaussian processes: the variational approach to sparse approximation and the spectral representation of Gaussian processes. This gives rise to an approximation that inherits the benefits of the variational approach but with the representational power and computational scalability of spectral representations. The work hinges on a key result that there exist spectral features related to a finite domain of the Gaussian process which exhibit almost-independent covariances. We derive these expressions for Matern kernels in one dimension, and generalize to more dimensions using kernels with specific structures. Under the assumption of additive Gaussian noise, our method requires only a single pass through the data set, making for very fast and accurate computation. We fit a model to 4 million training points in just a few minutes on a standard laptop. With non-conjugate likelihoods, our MCMC scheme reduces the cost of computation from O(NM2) (for a sparse Gaussian process) to O(NM) per iteration, where N is the number of data and M is the number of features.
Description
Keywords
Gaussian processes, Fourier features, variational inference, PROCESS REGRESSION, COX PROCESSES, APPROXIMATION, MODELS
Other note
Citation
Hensman , J , Durrande , N & Solin , A 2018 , ' Variational Fourier Features for Gaussian Processes ' , Journal of Machine Learning Research , vol. 18 , no. 1 , 151 , pp. 1-52 . < https://dl.acm.org/citation.cfm?id=3242008 >