On Using Distribution-Based Compositionality Assessment to Evaluate Compositional Generalisation in Machine Translation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMoisio, Anssien_US
dc.contributor.authorCreutz, Mathiasen_US
dc.contributor.authorKurimo, Mikkoen_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorSpeech Recognitionen
dc.date.accessioned2024-01-04T09:05:41Z
dc.date.available2024-01-04T09:05:41Z
dc.date.issued2023-12-06en_US
dc.description.abstractCompositional generalisation (CG), in NLP and in machine learning more generally, has been assessed mostly using artificial datasets. It is important to develop benchmarks to assess CG also in real-world natural language tasks in order to understand the abilities and limitations of systems deployed in the wild. To this end, our GenBench Collaborative Benchmarking Task submission utilises the distribution-based compositionality assessment (DBCA) framework to split the Europarl translation corpus into a training and a test set in such a way that the test set requires compositional generalisation capacity. Specifically, the training and test sets have divergent distributions of dependency relations, testing NMT systems’ capability of translating dependencies that they have not been trained on. This is a fully-automated procedure to create natural language compositionality benchmarks, making it simple and inexpensive to apply it further to other datasets and languages. The code and data for the experiments is available at https://github.com/aalto-speech/dbca.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMoisio, A, Creutz, M & Kurimo, M 2023, On Using Distribution-Based Compositionality Assessment to Evaluate Compositional Generalisation in Machine Translation . in Proceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLP . Association for Computational Linguistics, GenBench: Workshop on generalisation (benchmarking) in NLP, Singapore, Singapore, 06/12/2023 . < https://aclanthology.org/2023.genbench-1.17 >en
dc.identifier.isbn979-8-89176-042-4
dc.identifier.otherPURE UUID: a61184fe-ef63-4972-8d34-6e989438b4c9en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/a61184fe-ef63-4972-8d34-6e989438b4c9en_US
dc.identifier.otherPURE LINK: https://aclanthology.org/2023.genbench-1.pdfen_US
dc.identifier.otherPURE LINK: https://aclanthology.org/2023.genbench-1.17en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/131423680/2023.genbench-1.17.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125491
dc.identifier.urnURN:NBN:fi:aalto-202401041180
dc.language.isoenen
dc.relation.ispartofGenBench: Workshop on generalisation (benchmarking) in NLPen
dc.relation.ispartofseriesProceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLPen
dc.rightsopenAccessen
dc.titleOn Using Distribution-Based Compositionality Assessment to Evaluate Compositional Generalisation in Machine Translationen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files