Gaussian kernel quadrature at scaled Gauss–Hermite nodes

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

Major/Subject

Mcode

Degree programme

Language

en

Pages

26

Series

BIT - Numerical Mathematics, pp. 877–902

Abstract

This article derives an accurate, explicit, and numerically stable approximation to the kernel quadrature weights in one dimension and on tensor product grids when the kernel and integration measure are Gaussian. The approximation is based on use of scaled Gauss–Hermite nodes and truncation of the Mercer eigendecomposition of the Gaussian kernel. Numerical evidence indicates that both the kernel quadrature and the approximate weights at these nodes are positive. An exponential rate of convergence for functions in the reproducing kernel Hilbert space induced by the Gaussian kernel is proved under an assumption on growth of the sum of absolute values of the approximate weights.

Description

Other note

Citation

Karvonen, T & Särkkä, S 2019, 'Gaussian kernel quadrature at scaled Gauss–Hermite nodes', BIT - Numerical Mathematics, pp. 877–902. https://doi.org/10.1007/s10543-019-00758-3