Novel carbon film induces precocious calcium oscillation to promote neuronal cell maturation
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2020-10-19
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Scientific Reports, Volume 10, issue 1
Abstract
Different types of carbon materials are biocompatible with neural cells and can promote maturation. The mechanism of this effect is not clear. Here we have tested the capacity of a carbon material composed of amorphous sp3 carbon backbone, embedded with a percolating network of sp2 carbon domains to sustain neuronal cultures. We found that cortical neurons survive and develop faster on this novel carbon material. After 3 days in culture, there is a precocious increase in the frequency of neuronal activity and in the expression of maturation marker KCC2 on carbon films as compared to a commonly used glass surface. Accelerated development is accompanied by a dramatic increase in neuronal dendrite arborization. The mechanism for the precocious maturation involves the activation of intracellular calcium oscillations by the carbon material already after 1 day in culture. Carbon-induced oscillations are independent of network activity and reflect intrinsic spontaneous activation of developing neurons. Thus, these results reveal a novel mechanism for carbon material-induced neuronal survival and maturation.Description
Keywords
Other note
Citation
Ludwig, A, Kesaf, S, Heikkinen, J J, Sukhanova, T, Khakipoor, S, Molinari, F, Pellegrino, C, Kim, S I, Han, J G, Huttunen, H J, Lauri, S E, Franssila, S, Jokinen, V & Rivera, C 2020, ' Novel carbon film induces precocious calcium oscillation to promote neuronal cell maturation ', Scientific Reports, vol. 10, no. 1, 17661 . https://doi.org/10.1038/s41598-020-74535-6