Eco-friendly Flame-Retardant Cellulose Nanofibril Aerogels by Incorporating Sodium Bicarbonate
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
Series
ACS Applied Materials and Interfaces, Volume 10, issue 32, pp. 27407-27415
Abstract
Cellulose nanofiber (CNF) aerogels offer excellent thermal insulation properties, but high flammability restricts their application. In this study, CNF aerogels were prepared by incorporating sodium bicarbonate (SBC), which effectively improved the fire retardancy without compromising the thermal conductivity of the aerogels, which was only 28 mW m-1 K-1. The minimum burning velocity of flame-retardant aerogels was 0.20 cm s-1 at 40 wt % of SBC, which is significantly lower compared to 5.84 cm s-1 of pure CNF aerogels. At the threshold concentration of 20 wt % SBC, the flame-retardant aerogel demonstrated flameless pyrolysis along with enhanced char formation. SBC additionally provides control over the microporosity and morphology, due to the concentration-dependent formation of lamellar layers during the preparation of aerogels. Overall, this work describes an efficient method for preparing flame-retardant CNF aerogels that could lay the foundation for next-generation bio-based insulation materials.Description
Keywords
Other note
Citation
Farooq, M, Sipponen, M H, Seppälä, A & Österberg, M 2018, 'Eco-friendly Flame-Retardant Cellulose Nanofibril Aerogels by Incorporating Sodium Bicarbonate', ACS Applied Materials and Interfaces, vol. 10, no. 32, pp. 27407-27415. https://doi.org/10.1021/acsami.8b04376