CopyMix : Mixture model based single-cell clustering and copy number profiling using variational inference

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorSafinianaini, Negaren_US
dc.contributor.authorDe Souza, Camila P.E.en_US
dc.contributor.authorRoth, Andrewen_US
dc.contributor.authorKoptagel, Hazalen_US
dc.contributor.authorToosi, Hoseinen_US
dc.contributor.authorLagergren, Jensen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.organizationWestern Universityen_US
dc.contributor.organizationUniversity of British Columbiaen_US
dc.contributor.organizationScience for Life Laboratoryen_US
dc.contributor.organizationKTH Royal Institute of Technologyen_US
dc.date.accessioned2024-11-21T14:51:45Z
dc.date.available2024-11-21T14:51:45Z
dc.date.issued2024-12en_US
dc.descriptionPublisher Copyright: © 2024 The Authors
dc.description.abstractInvestigating tumor heterogeneity using single-cell sequencing technologies is imperative to understand how tumors evolve since each cell subpopulation harbors a unique set of genomic features that yields a unique phenotype, which is bound to have clinical relevance. Clustering of cells based on copy number data obtained from single-cell DNA sequencing provides an opportunity to identify different tumor cell subpopulations. Accordingly, computational methods have emerged for single-cell copy number profiling and clustering; however, these two tasks have been handled sequentially by applying various ad-hoc pre- and post-processing steps; hence, a procedure vulnerable to introducing clustering artifacts. We avoid the clustering artifact issues in our method, CopyMix, a Variational Inference for a novel mixture model, by jointly inferring cell clusters and their underlying copy number profile. Our probabilistic graphical model is an improved version of the mixture of hidden Markov models, which is designed uniquely to infer single-cell copy number profiling and clustering. For the evaluation, we used likelihood-ratio test, CH index, Silhouette, V-measure, total variation scores. CopyMix performs well on both biological and simulated data. Our favorable results indicate a considerable potential to obtain clinical impact by using CopyMix in studies of cancer tumor heterogeneity.en
dc.description.versionPeer revieweden
dc.format.extent17
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationSafinianaini, N, De Souza, C P E, Roth, A, Koptagel, H, Toosi, H & Lagergren, J 2024, 'CopyMix : Mixture model based single-cell clustering and copy number profiling using variational inference', Computational Biology and Chemistry, vol. 113, 108257, pp. 1-17. https://doi.org/10.1016/j.compbiolchem.2024.108257en
dc.identifier.doi10.1016/j.compbiolchem.2024.108257en_US
dc.identifier.issn1476-9271
dc.identifier.issn1476-928X
dc.identifier.otherPURE UUID: fbc7efa4-b9e3-4258-812b-cec16dac9b7aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/fbc7efa4-b9e3-4258-812b-cec16dac9b7aen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85208042394&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/164424436/CopyMix_-_Mixture_model_based_single-cell_clustering_and_copy_number_profiling_using_variational_inference.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131927
dc.identifier.urnURN:NBN:fi:aalto-202411217440
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesComputational Biology and Chemistryen
dc.relation.ispartofseriesVolume 113, pp. 1-17en
dc.rightsopenAccessen
dc.subject.keywordCanceren_US
dc.subject.keywordCopy number profilingen_US
dc.subject.keywordMixture modelsen_US
dc.subject.keywordSingle-cellen_US
dc.subject.keywordTumor clonal decompositionen_US
dc.subject.keywordVariational inferenceen_US
dc.titleCopyMix : Mixture model based single-cell clustering and copy number profiling using variational inferenceen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files