Quantifying the evolution of atomic interaction of a complex surface with a functionalized atomic force microscopy tip
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2020-12-01
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
Scientific Reports, Volume 10, issue 1, pp. 1-12
Abstract
Terminating the tip of an atomic force microscope with a CO molecule allows data to be acquired with a well-known and inert apex. Previous studies have shown conflicting results regarding the electrostatic interaction, indicating in some cases that the negative charge at the apex of the CO dominates, whereas in other cases the positive charge at the end of the metal tip dominates. To clarify this, we investigated CaF 2(111). CaF 2 is an ionic crystal and the (111) surface does not possess charge inversion symmetry. Far from the surface, the interaction is dominated by electrostatics via the negative charge at the apex. Closer to the surface, Pauli repulsion and CO bending dominate, which leads to an unexpected appearance of the complex 3-atom unit cell. We compare simulated data in which the electrostatics are modeled by point particles versus a charge density calculated by DFT. We also compare modeling Pauli repulsion via individual Lennard–Jones potentials versus a total charge density overlap. In doing so, we determine forcefield parameters useful for future investigations of biochemical processes.Description
Keywords
Other note
Citation
Liebig, A, Hapala, P, Weymouth, A J & Giessibl, F J 2020, ' Quantifying the evolution of atomic interaction of a complex surface with a functionalized atomic force microscopy tip ', Scientific Reports, vol. 10, no. 1, 14104, pp. 1-12 . https://doi.org/10.1038/s41598-020-71077-9