Magnitude-Preserving Ranking for Structured Outputs

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBrouard, Celineen_US
dc.contributor.authorBach, Ericen_US
dc.contributor.authorBöcker, Sebastianen_US
dc.contributor.authorRousu, Juhoen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorZhang, Min-Lingen_US
dc.contributor.editorNoh, Yung-Kyunen_US
dc.contributor.groupauthorProfessorship Rousu Juhoen
dc.contributor.groupauthorHelsinki Institute for Information Technology (HIIT)en
dc.contributor.organizationFriedrich Schiller University Jenaen_US
dc.date.accessioned2019-07-30T07:15:51Z
dc.date.available2019-07-30T07:15:51Z
dc.date.issued2017-11-03en_US
dc.description.abstractIn this paper, we present a novel method for solving structured prediction problems, based on combining Input Output Kernel Regression (IOKR) with an extension of magnitude-preserving ranking to structured output spaces. In particular, we concentrate on the case where a set of candidate outputs has been given, and the associated pre-image problem calls for ranking the set of candidate outputs. Our method, called magnitude-preserving IOKR, both aims to produce a good approximation of the output feature vectors, and to preserve the magnitude differences of the output features in the candidate sets. For the case where the candidate set does not contain corresponding ’correct’ inputs, we propose a method for approximating the inputs through application of IOKR in the reverse direction. We apply our method to two learning problems: cross-lingual document retrieval and metabolite identification. Experiments show that the proposed approach improves performance over IOKR, and in the latter application obtains the current state-of-the-art accuracy.en
dc.description.versionPeer revieweden
dc.format.extent16
dc.format.extent407-422
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBrouard, C, Bach, E, Böcker, S & Rousu, J 2017, Magnitude-Preserving Ranking for Structured Outputs . in M-L Zhang & Y-K Noh (eds), Proceedings of the Ninth Asian Conference on Machine Learning . Proceedings of Machine Learning Research, vol. 77, JMLR, pp. 407-422, Asian Conference on Machine Learning, Seoul, Korea, Republic of, 15/11/2017 . < http://proceedings.mlr.press/v77/brouard17a.html >en
dc.identifier.issn1938-7228
dc.identifier.otherPURE UUID: 3f45a7e1-0896-4b66-a591-bd0ff3ed0d40en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/3f45a7e1-0896-4b66-a591-bd0ff3ed0d40en_US
dc.identifier.otherPURE LINK: http://proceedings.mlr.press/v77/brouard17a.htmlen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/35131946/brouard17a.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/39417
dc.identifier.urnURN:NBN:fi:aalto-201907304472
dc.language.isoenen
dc.publisherPMLR
dc.relation.ispartofAsian Conference on Machine Learningen
dc.relation.ispartofseriesProceedings of the Ninth Asian Conference on Machine Learningen
dc.relation.ispartofseriesProceedings of Machine Learning Researchen
dc.relation.ispartofseriesVolume 77en
dc.rightsopenAccessen
dc.titleMagnitude-Preserving Ranking for Structured Outputsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files