A cfd approach for risk assessment based on airborne pathogen transmission

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZoka, Hamid Motamedien_US
dc.contributor.authorMoshfeghi, Mohammaden_US
dc.contributor.authorBordbar, Hadien_US
dc.contributor.authorMirzaei, Parham A.en_US
dc.contributor.authorSheikhnejad, Yahyaen_US
dc.contributor.departmentDepartment of Civil Engineeringen
dc.contributor.groupauthorStructures – Structural Engineering, Mechanics and Computationen
dc.contributor.organizationTarbiat Modares Universityen_US
dc.contributor.organizationUniversity of Nottinghamen_US
dc.contributor.organizationUniversity of Aveiroen_US
dc.contributor.organizationSogang Universityen_US
dc.date.accessioned2021-08-25T06:51:26Z
dc.date.available2021-08-25T06:51:26Z
dc.date.issued2021-08en_US
dc.descriptionFunding Information: Acknowledgments: The faculty of Engineering of The University of Nottingham and the Academy of Finland, under grant no. 314487, are acknowledged. The authors would also like to acknowledge the computational support of the Sogang University Research Grant of 2019 (201919069.01). Publisher Copyright: © 2021 by the authors. Li-censee MDPI, Basel, Switzerland.
dc.description.abstractThe outbreak of COVID-19 necessitates developing reliable tools to derive safety measures, including safe social distance and minimum exposure time under different circum-stances. Transient Eulerian–Lagrangian computational fluid dynamics (CFD) models have emerged as a viably fast and economical option. Nonetheless, these CFD models resolve the instantaneous distribution of droplets inside a computational domain, making them incapable of directly being used to assess the risk of infection as it depends on the total accumulated dosage of infecting viruses received by a new host within an exposure time. This study proposes a novel risk assessment model (RAM) to predict the temporal and spatial accumulative concentration of infectious exhaled droplets based on the bio-source’s exhalation profile and droplet distribution using the CFD results of respiratory events in various environmental conditions. Unlike the traditional approach in the bulk movement assessment of droplets’ outreach in a domain, every single droplet is traced inside the domain at each time step, and the total number of droplets passing through any arbitrary position of the domain is determined using a computational code. The performance of RAM is investigated for a series of case studies against various respiratory events where the horizontal and the lateral spread of risky zones are shown to temporarily vary rather than being fixed in space. The sensitivity of risky zones to ambient temperature and relative humidity was also addressed for sample cough and sneeze cases. This implies that the RAM provides crucial information required for defining safety measures such as safety distances or minimum exposure times in different environments.en
dc.description.versionPeer revieweden
dc.format.extent25
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationZoka, H M, Moshfeghi, M, Bordbar, H, Mirzaei, P A & Sheikhnejad, Y 2021, ' A cfd approach for risk assessment based on airborne pathogen transmission ', Atmosphere, vol. 12, no. 8, 986 . https://doi.org/10.3390/atmos12080986en
dc.identifier.doi10.3390/atmos12080986en_US
dc.identifier.issn2073-4433
dc.identifier.otherPURE UUID: 49570832-3b52-48f5-b51e-24ccae464af9en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/49570832-3b52-48f5-b51e-24ccae464af9en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85112055323&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/66585301/atmosphere_12_00986_v2.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/109125
dc.identifier.urnURN:NBN:fi:aalto-202108258362
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesAtmosphereen
dc.relation.ispartofseriesVolume 12, issue 8en
dc.rightsopenAccessen
dc.subject.keywordCFDen_US
dc.subject.keywordCOVID-19en_US
dc.subject.keywordEulerian–Lagrangian modelingen_US
dc.subject.keywordRespiratory dropletsen_US
dc.subject.keywordRisk assessmenten_US
dc.titleA cfd approach for risk assessment based on airborne pathogen transmissionen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files