Does the magic of BERT apply to medical code assignment? A quantitative study
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Ji, Shaoxiong | en_US |
dc.contributor.author | Hölttä, Matti | en_US |
dc.contributor.author | Marttinen, Pekka | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.groupauthor | Professorship Marttinen P. | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.groupauthor | Computer Science - Artificial Intelligence and Machine Learning (AIML) | en |
dc.contributor.organization | Department of Computer Science | en_US |
dc.contributor.organization | Aalto University | en_US |
dc.date.accessioned | 2021-11-04T05:05:34Z | |
dc.date.available | 2021-11-04T05:05:34Z | |
dc.date.issued | 2021-12 | en_US |
dc.description | | openaire: EC/H2020/101016775/EU//INTERVENE | |
dc.description.abstract | Unsupervised pretraining is an integral part of many natural language processing systems, and transfer learning with language models has achieved remarkable results in downstream tasks. In the clinical application of medical code assignment, diagnosis and procedure codes are inferred from lengthy clinical notes such as hospital discharge summaries. However, it is not clear if pretrained models are useful for medical code prediction without further architecture engineering. This paper conducts a comprehensive quantitative analysis of various contextualized language models' performances, pretrained in different domains, for medical code assignment from clinical notes. We propose a hierarchical fine-tuning architecture to capture interactions between distant words and adopt label-wise attention to exploit label information. Contrary to current trends, we demonstrate that a carefully trained classical CNN outperforms attention-based models on a MIMIC-III subset with frequent codes. Our empirical findings suggest directions for building robust medical code assignment models. | en |
dc.description.version | Peer reviewed | en |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Ji, S, Hölttä, M & Marttinen, P 2021, ' Does the magic of BERT apply to medical code assignment? A quantitative study ', Computers in Biology and Medicine, vol. 139, 104998 . https://doi.org/10.1016/j.compbiomed.2021.104998 | en |
dc.identifier.doi | 10.1016/j.compbiomed.2021.104998 | en_US |
dc.identifier.issn | 0010-4825 | |
dc.identifier.other | PURE UUID: af2bb4b9-dbca-41fc-8981-c21e9e93dbfd | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/af2bb4b9-dbca-41fc-8981-c21e9e93dbfd | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85118487160&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/76096743/Does_the_magic_of_BERT_apply_to_medical_code_assignment_A_quantitative_study.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/110832 | |
dc.identifier.urn | URN:NBN:fi:aalto-2021110410005 | |
dc.language.iso | en | en |
dc.publisher | Elsevier Limited | |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/101016775/EU//INTERVENE | en_US |
dc.relation.ispartofseries | COMPUTERS IN BIOLOGY AND MEDICINE | en |
dc.rights | openAccess | en |
dc.title | Does the magic of BERT apply to medical code assignment? A quantitative study | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |