Humanistic interpretation and machine learning

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorPääkkönen, Juho
dc.contributor.authorYlikoski, Petri
dc.contributor.departmentDepartment of Computer Science
dc.contributor.departmentUniversity of Helsinki
dc.date.accessioned2021-03-22T07:08:54Z
dc.date.available2021-03-22T07:08:54Z
dc.date.issued2021-11-18
dc.description.abstractThis paper investigates how unsupervised machine learning methods might make hermeneutic interpretive text analysis more objective in the social sciences. Through a close examination of the uses of topic modeling—a popular unsupervised approach in the social sciences—it argues that the primary way in which unsupervised learning supports interpretation is by allowing interpreters to discover unanticipated information in larger and more diverse corpora and by improving the transparency of the interpretive process. This view highlights that unsupervised modeling does not eliminate the researchers’ judgments from the process of producing evidence for social scientific theories. The paper shows this by distinguishing between two prevalent attitudes toward topic modeling, i.e., topic realism and topic instrumentalism. Under neither can modeling provide social scientific evidence without the researchers’ interpretive engagement with the original text materials. Thus the unsupervised text analysis cannot improve the objectivity of interpretation by alleviating the problem of underdetermination in interpretive debate. The paper argues that the sense in which unsupervised methods can improve objectivity is by providing researchers with the resources to justify to others that their interpretations are correct. This kind of objectivity seeks to reduce suspicions in collective debate that interpretations are the products of arbitrary processes influenced by the researchers’ idiosyncratic decisions or starting points. The paper discusses this view in relation to alternative approaches to formalizing interpretation and identifies several limitations on what unsupervised learning can be expected to achieve in terms of supporting interpretive work.en
dc.description.versionPeer revieweden
dc.format.extent37
dc.format.mimetypeapplication/pdf
dc.identifier.citationPääkkönen , J & Ylikoski , P 2021 , ' Humanistic interpretation and machine learning ' , SYNTHESE , vol. 199 , pp. 1461–1497 . https://doi.org/10.1007/s11229-020-02806-wen
dc.identifier.doi10.1007/s11229-020-02806-w
dc.identifier.issn0039-7857
dc.identifier.otherPURE UUID: 81c9c1f0-d6a9-4cbf-9c31-59ee402c0c68
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/81c9c1f0-d6a9-4cbf-9c31-59ee402c0c68
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85090469837&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/56836330/P_kk_nen_Ylikoski2020_Article_HumanisticInterpretationAndMac.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/103225
dc.identifier.urnURN:NBN:fi:aalto-202103222503
dc.language.isoenen
dc.publisherSpringer Netherlands
dc.relation.ispartofseriesSYNTHESEen
dc.rightsopenAccessen
dc.subject.keywordHumanistic interpretation
dc.subject.keywordLatent Dirichlet allocation
dc.subject.keywordMachine learning
dc.subject.keywordObjectivity
dc.subject.keywordText analytics
dc.subject.keywordTopic modeling
dc.titleHumanistic interpretation and machine learningen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files