The cluster computation-based hybrid FEM–analytical model of induction motor for fault diagnostics

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAsad, Bilalen_US
dc.contributor.authorVaimann, Toomasen_US
dc.contributor.authorBelahcen, Anouaren_US
dc.contributor.authorKallaste, Antsen_US
dc.contributor.authorRassõlkin, Antonen_US
dc.contributor.authorNaveed Iqbal, M.en_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorComputational Electromechanicsen
dc.contributor.organizationTallinn University of Technologyen_US
dc.date.accessioned2020-11-30T08:10:44Z
dc.date.available2020-11-30T08:10:44Z
dc.date.issued2020-11-01en_US
dc.description.abstractThis paper presents a hybrid finite element method (FEM)–analytical model of a three-phase squirrel cage induction motor solved using parallel processing for reducing the simulation time. The growing development in artificial intelligence (AI) techniques can lead towards more reliable diagnostic algorithms. The biggest challenge for AI techniques is that they need a big amount of data under various conditions to train them. These data are difficult to obtain from the industries because they contain low numbers of possible faulty cases, as well as from laboratories because a limited number of motors can be broken for testing purposes. The only feasible solution is mathematical models, which in the long run can become part of advanced diagnostic techniques. The benefits of analytical and FEM models for their speed and accuracy respectively can be exploited by making a hybrid model. Moreover, the concept of cloud computing can be utilized to reduce the simulation time of the FEM model. In this paper, a hybrid model being solved on multiple processors in a parallel fashion is presented. The results depict that by dividing the rotor steps among several processors working in parallel, the simulation time reduces considerably. The simulation results under healthy and broken rotor bar cases are compared with those taken from a laboratory setup for validation.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAsad, B, Vaimann, T, Belahcen, A, Kallaste, A, Rassõlkin, A & Naveed Iqbal, M 2020, ' The cluster computation-based hybrid FEM–analytical model of induction motor for fault diagnostics ', Applied Sciences (Switzerland), vol. 10, no. 21, 7572 . https://doi.org/10.3390/app10217572en
dc.identifier.doi10.3390/app10217572en_US
dc.identifier.issn2076-3417
dc.identifier.otherPURE UUID: 0c0538af-c60f-428a-be30-17ddd6508622en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/0c0538af-c60f-428a-be30-17ddd6508622en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85094557369&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/53064738/ELEC_Asad_etal_The_Cluster_Computation_based_ApplSci_10_21_2020_finalpublishedversion.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/61634
dc.identifier.urnURN:NBN:fi:aalto-2020113020479
dc.language.isoenen
dc.publisherSpringer International Publishing AG
dc.relation.ispartofseriesApplied Sciences (Switzerland)en
dc.relation.ispartofseriesVolume 10, issue 21en
dc.rightsopenAccessen
dc.subject.keywordFault diagnosisen_US
dc.subject.keywordFinite element analysisen_US
dc.subject.keywordInduction motorsen_US
dc.subject.keywordModelingen_US
dc.subject.keywordParallel processingen_US
dc.titleThe cluster computation-based hybrid FEM–analytical model of induction motor for fault diagnosticsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files