Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAbbasi, Fatemeen_US
dc.contributor.authorByrka, Jarosławen_US
dc.contributor.authorGadekar, Ameeten_US
dc.contributor.authorMarx, Dánielen_US
dc.contributor.authorSpoerhase, Joachimen_US
dc.contributor.authorBanerjee, Sandipen_US
dc.contributor.authorChalermsook, Parinyaen_US
dc.contributor.authorKhodamoradi, Kamyaren_US
dc.contributor.authorSharma, Roohanien_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorBringmann, Karlen_US
dc.contributor.editorGrohe, Martinen_US
dc.contributor.editorPuppis, Gabrieleen_US
dc.contributor.editorSvensson, Olaen_US
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.groupauthorComputer Science - Algorithms and Theoretical Computer Science (TCS) - Research areaen
dc.contributor.groupauthorProfessorship Chalermsook Parinyaen
dc.contributor.organizationUniversity of Wrocławen_US
dc.contributor.organizationHelmholtz Center for Information Securityen_US
dc.contributor.organizationUniversità della Svizzera italianaen_US
dc.contributor.organizationUniversity of Bergenen_US
dc.contributor.organizationBar-Ilan Universityen_US
dc.contributor.organizationUniversity of Sheffielden_US
dc.contributor.organizationUniversity of Reginaen_US
dc.date.accessioned2024-08-28T08:51:14Z
dc.date.available2024-08-28T08:51:14Z
dc.date.issued2024-07en_US
dc.descriptionPublisher Copyright: © Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase.
dc.description.abstractWe consider the well-studied Robust (k, z)-Clustering problem, which generalizes the classic k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi, Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z ≥ 1, the input to Robust (k, z)-Clustering is a set P of n points in a metric space (M, δ), a weight function w : P → R≥0 and a positive integer k. Further, each point belongs to one (or more) of the m many different groups S1, S2, . . ., Sm ⊆ P. Our goal is to find a set X of k centers such that maxi∈[m]Pp∈Si w(p)δ(p, X)z is minimized. Complementing recent work on this problem, we give a comprehensive understanding of the parameterized approximability of the problem in geometric spaces where the parameter is the number k of centers. We prove the following results: (i) For a universal constant η0 > 0.0006, we devise a 3z(1−η0)-factor FPT approximation algorithm for Robust (k, z)-Clustering in discrete high-dimensional Euclidean spaces where the set of potential centers is finite. This shows that the lower bound of 3z for general metrics [Goyal, Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure. (ii) We show that Robust (k, z)-Clustering in discrete Euclidean spaces is (p3/2−o(1))-hard to approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic dimensions. This rules out a (1 + ϵ)-approximation algorithm running in time f(k, ϵ)poly(m, n) (also called efficient parameterized approximation scheme or EPAS), giving a striking contrast with the recent EPAS for the continuous setting where centers can be placed anywhere in the space [Abbasi et al., FOCS’23]. (iii) However, we obtain an EPAS for Robust (k, z)-Clustering in discrete Euclidean spaces when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al., FOCS’23] provides an EPAS only in dimension o(log log n)). Our EPAS works also for metrics of sub-logarithmic doubling dimension.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAbbasi, F, Byrka, J, Gadekar, A, Marx, D, Spoerhase, J, Banerjee, S, Chalermsook, P, Khodamoradi, K & Sharma, R 2024, Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces. in K Bringmann, M Grohe, G Puppis & O Svensson (eds), 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024., 6, Leibniz International Proceedings in Informatics, LIPIcs, vol. 297, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, International Colloquium on Automata, Languages, and Programming, Tallinn, Estonia, 08/07/2024. https://doi.org/10.4230/LIPIcs.ICALP.2024.6en
dc.identifier.doi10.4230/LIPIcs.ICALP.2024.6en_US
dc.identifier.isbn978-3-95977-322-5
dc.identifier.issn1868-8969
dc.identifier.otherPURE UUID: bd35beb1-6352-4999-9c7d-f37c76122d3fen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/bd35beb1-6352-4999-9c7d-f37c76122d3fen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/155295197/SCI_Abbasi_etal_LIPIcs.ICALP.2024.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/130430
dc.identifier.urnURN:NBN:fi:aalto-202408285991
dc.language.isoenen
dc.relation.ispartofInternational Colloquium on Automata, Languages, and Programmingen
dc.relation.ispartofseries51st International Colloquium on Automata, Languages, and Programming, ICALP 2024en
dc.relation.ispartofseriesLeibniz International Proceedings in Informatics, LIPIcs ; Volume 297en
dc.rightsopenAccessen
dc.subject.keywordapproximation algorithmsen_US
dc.subject.keywordClusteringen_US
dc.subject.keywordparameterized complexityen_US
dc.titleParameterized Approximation For Robust Clustering in Discrete Geometric Spacesen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files