Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces
| dc.contributor | Aalto-yliopisto | fi |
| dc.contributor | Aalto University | en |
| dc.contributor.author | Abbasi, Fateme | en_US |
| dc.contributor.author | Byrka, Jarosław | en_US |
| dc.contributor.author | Gadekar, Ameet | en_US |
| dc.contributor.author | Marx, Dániel | en_US |
| dc.contributor.author | Spoerhase, Joachim | en_US |
| dc.contributor.author | Banerjee, Sandip | en_US |
| dc.contributor.author | Chalermsook, Parinya | en_US |
| dc.contributor.author | Khodamoradi, Kamyar | en_US |
| dc.contributor.author | Sharma, Roohani | en_US |
| dc.contributor.department | Department of Computer Science | en |
| dc.contributor.editor | Bringmann, Karl | en_US |
| dc.contributor.editor | Grohe, Martin | en_US |
| dc.contributor.editor | Puppis, Gabriele | en_US |
| dc.contributor.editor | Svensson, Ola | en_US |
| dc.contributor.groupauthor | Computer Science Professors | en |
| dc.contributor.groupauthor | Computer Science - Algorithms and Theoretical Computer Science (TCS) - Research area | en |
| dc.contributor.groupauthor | Professorship Chalermsook Parinya | en |
| dc.contributor.organization | University of Wrocław | en_US |
| dc.contributor.organization | Helmholtz Center for Information Security | en_US |
| dc.contributor.organization | Università della Svizzera italiana | en_US |
| dc.contributor.organization | University of Bergen | en_US |
| dc.contributor.organization | Bar-Ilan University | en_US |
| dc.contributor.organization | University of Sheffield | en_US |
| dc.contributor.organization | University of Regina | en_US |
| dc.date.accessioned | 2024-08-28T08:51:14Z | |
| dc.date.available | 2024-08-28T08:51:14Z | |
| dc.date.issued | 2024-07 | en_US |
| dc.description | Publisher Copyright: © Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. | |
| dc.description.abstract | We consider the well-studied Robust (k, z)-Clustering problem, which generalizes the classic k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi, Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z ≥ 1, the input to Robust (k, z)-Clustering is a set P of n points in a metric space (M, δ), a weight function w : P → R≥0 and a positive integer k. Further, each point belongs to one (or more) of the m many different groups S1, S2, . . ., Sm ⊆ P. Our goal is to find a set X of k centers such that maxi∈[m]Pp∈Si w(p)δ(p, X)z is minimized. Complementing recent work on this problem, we give a comprehensive understanding of the parameterized approximability of the problem in geometric spaces where the parameter is the number k of centers. We prove the following results: (i) For a universal constant η0 > 0.0006, we devise a 3z(1−η0)-factor FPT approximation algorithm for Robust (k, z)-Clustering in discrete high-dimensional Euclidean spaces where the set of potential centers is finite. This shows that the lower bound of 3z for general metrics [Goyal, Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure. (ii) We show that Robust (k, z)-Clustering in discrete Euclidean spaces is (p3/2−o(1))-hard to approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic dimensions. This rules out a (1 + ϵ)-approximation algorithm running in time f(k, ϵ)poly(m, n) (also called efficient parameterized approximation scheme or EPAS), giving a striking contrast with the recent EPAS for the continuous setting where centers can be placed anywhere in the space [Abbasi et al., FOCS’23]. (iii) However, we obtain an EPAS for Robust (k, z)-Clustering in discrete Euclidean spaces when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al., FOCS’23] provides an EPAS only in dimension o(log log n)). Our EPAS works also for metrics of sub-logarithmic doubling dimension. | en |
| dc.description.version | Peer reviewed | en |
| dc.format.mimetype | application/pdf | en_US |
| dc.identifier.citation | Abbasi, F, Byrka, J, Gadekar, A, Marx, D, Spoerhase, J, Banerjee, S, Chalermsook, P, Khodamoradi, K & Sharma, R 2024, Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces. in K Bringmann, M Grohe, G Puppis & O Svensson (eds), 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024., 6, Leibniz International Proceedings in Informatics, LIPIcs, vol. 297, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, International Colloquium on Automata, Languages, and Programming, Tallinn, Estonia, 08/07/2024. https://doi.org/10.4230/LIPIcs.ICALP.2024.6 | en |
| dc.identifier.doi | 10.4230/LIPIcs.ICALP.2024.6 | en_US |
| dc.identifier.isbn | 978-3-95977-322-5 | |
| dc.identifier.issn | 1868-8969 | |
| dc.identifier.other | PURE UUID: bd35beb1-6352-4999-9c7d-f37c76122d3f | en_US |
| dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/bd35beb1-6352-4999-9c7d-f37c76122d3f | en_US |
| dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/155295197/SCI_Abbasi_etal_LIPIcs.ICALP.2024.pdf | |
| dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/130430 | |
| dc.identifier.urn | URN:NBN:fi:aalto-202408285991 | |
| dc.language.iso | en | en |
| dc.relation.ispartof | International Colloquium on Automata, Languages, and Programming | en |
| dc.relation.ispartofseries | 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024 | en |
| dc.relation.ispartofseries | Leibniz International Proceedings in Informatics, LIPIcs ; Volume 297 | en |
| dc.rights | openAccess | en |
| dc.subject.keyword | approximation algorithms | en_US |
| dc.subject.keyword | Clustering | en_US |
| dc.subject.keyword | parameterized complexity | en_US |
| dc.title | Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces | en |
| dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
| dc.type.version | publishedVersion |