Reinforcement learning for scalable and reliable power allocation in SDN-based backscatter heterogeneous network

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorJameel, Furqanen_US
dc.contributor.authorKhan, Wali Ullahen_US
dc.contributor.authorJamshed, Muhammad Alien_US
dc.contributor.authorPervaiz, Harisen_US
dc.contributor.authorAbbasi, Qammeren_US
dc.contributor.authorJantti, Rikuen_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorCommunication Engineeringen
dc.contributor.organizationShandong Universityen_US
dc.contributor.organizationUniversity of Surreyen_US
dc.contributor.organizationLancaster Universityen_US
dc.contributor.organizationUniversity of Glasgowen_US
dc.date.accessioned2020-10-23T10:09:18Z
dc.date.available2020-10-23T10:09:18Z
dc.date.issued2020-07en_US
dc.description.abstractBackscatter heterogeneous networks are expected to usher a new era of massive connectivity of low-powered devices. With the integration of software-defined networking (SDN), such networks hold the promise to be a key enabling technology for massive Internet-of-things (IoT) due to myriad applications in industrial automation, healthcare, and logistics management. However, there are many aspects of SDN-based backscatter heterogeneous networks that need further development before practical realization. One of the challenging aspects is the high level of interference due to the reuse of spectral resources for backscatter communications. To partly address this issue, this article provides a reinforcement learning-based solution for effective interference management when backscatter tags coexist with other legacy devices in a heterogeneous network. Specifically, using reinforcement learning, the agents are trained to minimize the interference for macro-cell (legacy users) and small-cell (backscatter tags). Novel reward functions for both macro- and small-cells have been designed that help in controlling the transmission power levels of users. The results show that the proposed framework not only improves the performance of macro-cell users but also fulfills the quality of service requirements of backscatter tags by optimizing the long-term rewards.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.extent1069-1074
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationJameel, F, Khan, W U, Jamshed, M A, Pervaiz, H, Abbasi, Q & Jantti, R 2020, Reinforcement learning for scalable and reliable power allocation in SDN-based backscatter heterogeneous network . in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2020 ., 9162720, IEEE, pp. 1069-1074, IEEE Conference on Computer Communications, Toronto, Canada, 06/07/2020 . https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162720en
dc.identifier.doi10.1109/INFOCOMWKSHPS50562.2020.9162720en_US
dc.identifier.isbn9781728186955
dc.identifier.otherPURE UUID: 9645a719-639b-4891-bd0e-ac0ab008450een_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/9645a719-639b-4891-bd0e-ac0ab008450een_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85091504295&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/52277961/ELEC_Khan_Secure_Backscatter_INFOCOM.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/47068
dc.identifier.urnURN:NBN:fi:aalto-202010235955
dc.language.isoenen
dc.relation.ispartofIEEE Conference on Computer Communicationsen
dc.relation.ispartofseriesIEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2020en
dc.rightsopenAccessen
dc.subject.keywordBackscatter communicationsen_US
dc.subject.keywordInterference managementen_US
dc.subject.keywordInternet-of-things (IoT)en_US
dc.subject.keywordReinforcement learningen_US
dc.titleReinforcement learning for scalable and reliable power allocation in SDN-based backscatter heterogeneous networken
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files