Multi-Surfaced Elasto-Plastic Wood Material Model in Material Point Method

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorAdibaskoro, Titoen_US
dc.contributor.authorSołowski, Wojciech Tomaszen_US
dc.contributor.authorHostikka, Simoen_US
dc.contributor.departmentDepartment of Civil Engineeringen
dc.contributor.groupauthorStructures – Structural Engineering, Mechanics and Computationen
dc.contributor.groupauthorMineral Based Materials and Mechanicsen
dc.date.accessioned2021-12-01T07:50:13Z
dc.date.available2021-12-01T07:50:13Z
dc.date.issued2022-02-01en_US
dc.description.abstractWood is a naturally occurring material widely used for construction. Due to its natural origin, wood properties vary and its behaviour is complex. This paper shows an implementation of a multi-surface elasto-plastic constitutive material model for wood into a custom explicit material point method code. The constitutive model chosen is one proposed by Schmidt & Kaliske with minor modifications to ensure better internal consistency. The model parameters are chosen based on literature data for spruce. The paper presents two Convected Particle Domain Interpolation Material Point Method simulations of experiments, both performed with the previously established model parameters. The first simulation replicates a compression test of a spruce specimen perpendicular to grain direction, carried out at the Department of Civil Engineering, Aalto University. The second simulation replicates an experiment from literature, in which a spruce specimen with knots is tensioned until failure. The numerical simulations successfully replicate the experimental outcomes qualitatively in terms of the deformation and load-displacement curves. Simulations of the three knotted specimens under tension, with introduced slight variation in wood grain direction, replicate different failure patterns with a similar failure load, resembling the behaviour of natural wooden structural elements. Additionally, one of the obtained failure patterns replicates that of the experiment well.en
dc.description.versionPeer revieweden
dc.format.extent19
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationAdibaskoro, T, Sołowski, W T & Hostikka, S 2022, ' Multi-Surfaced Elasto-Plastic Wood Material Model in Material Point Method ', International Journal of Solids and Structures, vol. 236-237, 111333 . https://doi.org/10.1016/j.ijsolstr.2021.111333en
dc.identifier.doi10.1016/j.ijsolstr.2021.111333en_US
dc.identifier.issn0020-7683
dc.identifier.otherPURE UUID: 1fcda39b-96cf-4ad0-b51a-bbb80835d79aen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/1fcda39b-96cf-4ad0-b51a-bbb80835d79aen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85119321541&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/76298767/1_s2.0_S002076832100411X_main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/111335
dc.identifier.urnURN:NBN:fi:aalto-2021120110485
dc.language.isoenen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relation.ispartofseriesInternational Journal of Solids and Structuresen
dc.relation.ispartofseriesVolume 236-237en
dc.rightsopenAccessen
dc.subject.keywordmaterial point methoden_US
dc.subject.keywordmulti-surfaceen_US
dc.subject.keywordorthotropicen_US
dc.subject.keywordplasticityen_US
dc.subject.keywordwooden_US
dc.titleMulti-Surfaced Elasto-Plastic Wood Material Model in Material Point Methoden
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files