Manipulator control for physical astronaut-robot interaction

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
Master's thesis
Date
2009
Major/Subject
Automaatiotekniikka
Mcode
Aut-84
Degree programme
Language
en
Pages
75
Series
Abstract
The future of human-robot interaction applications is highly dependent on the capability to perform safe and efficient physical interaction using the robot's manipulators with a human. Even though the optimal use of Human-Robot Interaction (HRI) is a challenging problem, it can improve the quality and efficiency of the task execution since humans and robots are both able to perform certain tasks in some situations better than the others. WorkPartner, TKK's mobile service robot, has no support for manipulator control system for the purpose of safe human-robot physical interaction application. Additionally, the existing manipulator control system has no position controller to he upgraded for human-robot physical interaction applications. This thesis addresses those problems by developing the compliance control capabilities of the WorkPartner manipulator. First, the state-of-the-art of physical human robot interaction is presented focusing on commonly used manipulator control algorithms, such as stiffness control and impedance control as well as force/torque sensors, such as the six-axis force/torque sensor and motor current sensor. Second, a manipulator control algorithm is suggested based on admittance control. These algorithms is implemented on the WorkPartner simulator and on the WorkPartner manipulator to examine the four selected manipulator behavior modes which are follow movement, hold position, adapt movement and push with force. The thesis test results show that selected admittance based manipulator control algorithm is capable to provide all the four examined manipulator behaviour modes. The thesis is part of the SpacePartner project which is a co-sponsored PhD project of the European Space Agency (ESA) and the Helsinki University of Technology (TKK).
Description
Supervisor
Halme, Aarne
Hyyppä, Kalevi
Thesis advisor
Heikkilä. Seppo
Keywords
impedance control, admittance control, position control
Other note
Citation