Spontaneous Valley Spirals in Magnetically Encapsulated Twisted Bilayer Graphene

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2021-02-04
Major/Subject
Mcode
Degree programme
Language
en
Pages
8
1-8
Series
Physical Review Letters, Volume 126, issue 5
Abstract
Van der Waals heterostructures provide a rich platform for emergent physics due to their tunable hybridization of layers, orbitals, and spin. Here, we find that twisted bilayer graphene stacked between antialigned ferromagnetic insulators can feature flat electronic bands due to the interplay between twist, exchange proximity, and spin–orbit coupling. These flat bands are nearly degenerate in valley only and are effectively described by a triangular superlattice model. At half filling, we find that interactions induce spontaneous valley correlations that favor spiral order and derive a low-energy valley-Heisenberg model with symmetric and antisymmetric exchange couplings. We also show how electric interlayer bias broadens the bands and tunes these couplings. Our results put forward magnetic van der Waals heterostructures as a platform to explore valley-correlated states.
Description
Keywords
Other note
Citation
Wolf , T , Zilberberg , O , Blatter , G & Lado , J 2021 , ' Spontaneous Valley Spirals in Magnetically Encapsulated Twisted Bilayer Graphene ' , Physical Review Letters , vol. 126 , no. 5 , 056803 , pp. 1-8 . https://doi.org/10.1103/PhysRevLett.126.056803