Energy Loss for Droplets Bouncing Off Superhydrophobic Surfaces

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorThenarianto, Calvin
dc.contributor.authorKoh, Xue Qi
dc.contributor.authorLin, Marcus
dc.contributor.authorJokinen, Ville
dc.contributor.authorDaniel, Dan
dc.contributor.departmentAgency for Science, Technology and Research
dc.contributor.departmentNanyang Technological University
dc.contributor.departmentDepartment of Chemistry and Materials Science
dc.contributor.departmentDepartment of Chemistry and Materials Scienceen
dc.date.accessioned2024-01-17T08:37:17Z
dc.date.available2024-01-17T08:37:17Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2024-02-16
dc.date.issued2023-02-28
dc.descriptionThe authors thank Wang and co-workers for sharing their data with us. Publisher Copyright: © 2023 American Chemical Society.
dc.description.abstractA water droplet can bounce off superhydrophobic surfaces multiple times before coming to a stop. The energy loss for such droplet rebounds can be quantified by the ratio of the rebound speed UR and the initial impact speed UI; i.e., its restitution coefficient e = UR/UI. Despite much work in this area, a mechanistic explanation for the energy loss for rebounding droplets is still lacking. Here, we measured e for submillimeter-and millimeter-sized droplets impacting two different superhydrophobic surfaces over a wide range of UI (4- 700 cm s-1). We proposed simple scaling laws to explain the observed nonmonotonic dependence of e on UI. In the limit of low UI, energy loss is dominated by contact-line pinning and e is sensitive to the surface wetting properties, in particular to contact angle hysteresis Delta cos 0 of the surface. In contrast, e is dominated by inertial-capillary effects and does not depend on Delta cos 0 in the limit of high UI.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.extent3162–3167
dc.identifier.citationThenarianto , C , Koh , X Q , Lin , M , Jokinen , V & Daniel , D 2023 , ' Energy Loss for Droplets Bouncing Off Superhydrophobic Surfaces ' , Langmuir , vol. 39 , no. 8 , pp. 3162–3167 . https://doi.org/10.1021/acs.langmuir.2c03449en
dc.identifier.doi10.1021/acs.langmuir.2c03449
dc.identifier.issn0743-7463
dc.identifier.issn1520-5827
dc.identifier.otherPURE UUID: fd4bfe36-cc37-4ccc-9412-b66a7bc1198e
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/fd4bfe36-cc37-4ccc-9412-b66a7bc1198e
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85148517257&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: http://hdl.handle.net/10754/682058
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/125910
dc.identifier.urnURN:NBN:fi:aalto-202401171585
dc.language.isoenen
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesLangmuiren
dc.relation.ispartofseriesVolume 39, issue 8en
dc.rightsembargoedAccessen
dc.titleEnergy Loss for Droplets Bouncing Off Superhydrophobic Surfacesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files