On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Palma, M. | en_US |
dc.contributor.author | Scheller, C. P. | en_US |
dc.contributor.author | Maradan, D. | en_US |
dc.contributor.author | Feshchenko, A. V. | en_US |
dc.contributor.author | Meschke, M. | en_US |
dc.contributor.author | Zumbühl, D. M. | en_US |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.groupauthor | Quantum Phenomena and Devices | en |
dc.contributor.organization | University of Basel | en_US |
dc.date.accessioned | 2018-08-01T12:41:17Z | |
dc.date.available | 2018-08-01T12:41:17Z | |
dc.date.embargo | info:eu-repo/date/embargoEnd/2018-12-18 | en_US |
dc.date.issued | 2017-12-18 | en_US |
dc.description.abstract | Cooling nanoelectronic devices below 10 mK is a great challenge since thermal conductivities become very small, thus creating a pronounced sensitivity to heat leaks. Here, we overcome these difficulties by using adiabatic demagnetization of both the electronic leads and the large metallic islands of a Coulomb blockade thermometer. This reduces the external heat leak through the leads and also provides on-chip refrigeration, together cooling the thermometer down to 2.8 ± 0.1 mK. We present a thermal model which gives a good qualitative account and suggests that the main limitation is heating due to pulse tube vibrations. With better decoupling, temperatures below 1 mK should be within reach, thus opening the door for μK nanoelectronics. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 1-5 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Palma, M, Scheller, C P, Maradan, D, Feshchenko, A V, Meschke, M & Zumbühl, D M 2017, ' On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK ', Applied Physics Letters, vol. 111, no. 25, 253105, pp. 1-5 . https://doi.org/10.1063/1.5002565 | en |
dc.identifier.doi | 10.1063/1.5002565 | en_US |
dc.identifier.issn | 0003-6951 | |
dc.identifier.issn | 1077-3118 | |
dc.identifier.other | PURE UUID: 3f42536c-43a9-4c87-9c57-19943c9f4826 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/3f42536c-43a9-4c87-9c57-19943c9f4826 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85040119537&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/26487551/1.5002565.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/32739 | |
dc.identifier.urn | URN:NBN:fi:aalto-201808014139 | |
dc.language.iso | en | en |
dc.relation.ispartofseries | Applied Physics Letters | en |
dc.relation.ispartofseries | Volume 111, issue 25 | en |
dc.rights | openAccess | en |
dc.title | On-and-off chip cooling of a Coulomb blockade thermometer down to 2.8 mK | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |