Collective excitations of a one-dimensional quantum droplet
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2020-05-21
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Physical Review A, Volume 101, issue 5
Abstract
We calculate the excitation spectrum of a one-dimensional self-bound quantum droplet in a two-component bosonic mixture described by the Gross-Pitaevskii equation (GPE) with cubic and quadratic nonlinearities. The cubic term originates from the mean-field energy of the mixture proportional to the effective coupling constant δg, whereas the quadratic nonlinearity corresponds to the attractive beyond-mean-field contribution. The droplet properties are governed by a control parameter γ∞δgN2/3, where N is the particle number. For large γ>0, the droplet features the flat-top shape with the discrete part of its spectrum consisting of plane-wave Bogoliubov phonons propagating through the flat-density bulk and reflected by edges of the droplet. With decreasing γ, these modes cross into the continuum, sequentially crossing the particle-emission threshold at specific critical values. A notable exception is the breathing mode, which we find to be always bound. The balance point γ=0 provides implementation of a system governed by the GPE with an unusual quadratic nonlinearity. This case is characterized by the ratio of the breathing-mode frequency to the particle-emission threshold equal to 0.8904. As γ tends to -∞, this ratio tends to 1 and the droplet transforms into the soliton solution of the integrable cubic GPE.Description
Keywords
Other note
Citation
Tylutki, M, Astrakharchik, G E, Malomed, B A & Petrov, D S 2020, ' Collective excitations of a one-dimensional quantum droplet ', Physical Review A, vol. 101, no. 5, 051601 . https://doi.org/10.1103/PhysRevA.101.051601