Simple synthesis of self-assembled nacre-like materials with 3D periodic layers from nanochitin via hydrogelation and mineralization

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorXu, Junhuaen_US
dc.contributor.authorLiu, Liangen_US
dc.contributor.authorYu, Juanen_US
dc.contributor.authorZou, Yujunen_US
dc.contributor.authorPei, Wenhuien_US
dc.contributor.authorZhang, Lilien_US
dc.contributor.authorYe, Wenboen_US
dc.contributor.authorBai, Longen_US
dc.contributor.authorWang, Zhiguoen_US
dc.contributor.authorFan, Yiminen_US
dc.contributor.authorYong, Qiangen_US
dc.contributor.authorRojas, Orlando J.en_US
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorBio-based Colloids and Materialsen
dc.date.accessioned2022-02-23T07:30:04Z
dc.date.available2022-02-23T07:30:04Z
dc.date.issued2022-02-07en_US
dc.description| openaire: EC/H2020/788489/EU//BioELCell
dc.description.abstractThe superb mechanical properties of some natural materials usually result from highly ordered, multiscale and hierarchical architectures such as bone, nacre, exoskeleton, etc. Nonetheless, the involved gene regulated process cannot be realized artificially. Here we report bioinspired 3D structures with similar performance following a rapid, green, one-pot synthesis route based on the concept of "brick-and-mortar" biomineralization by introducing Ca2+ and PO43- into a nanochitin dispersion followed by ammonia vapor diffusion. The process leads to self-stratified, periodic assemblies formed under ion diffusion gradients and hydrogelation of nanochitin with simultaneous mineral coprecipitation. Specifically, an organic hydrogel network is formed from partially deacetylated chitin nanofibers together with hydroxyapatite. The components are structured in periodic bands by alternating (organic/inorganic) precipitation as layer-by-layer stacks. The layer space is adjustable by changing the ion concentration and temperature of regulators. Endowed with directional diffusion, customizable 3D forms are self-assembled and demonstrated to function as optical waveguides with selective light transmission. Upon hot pressing, the synthesized material shows structural similarity to natural nacre and displays exceptional strength. This artificial method can reduce the synthesis time from years in nature to a few days in a lab, with no need for complex treatments or facilities; moreover, the designable structure can be customized for uses ranging from structural support in biomedical implants to optical waveguides.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.extent1308-1317
dc.identifier.citationXu, J, Liu, L, Yu, J, Zou, Y, Pei, W, Zhang, L, Ye, W, Bai, L, Wang, Z, Fan, Y, Yong, Q & Rojas, O J 2022, ' Simple synthesis of self-assembled nacre-like materials with 3D periodic layers from nanochitin via hydrogelation and mineralization ', Green Chemistry, vol. 24, no. 3, pp. 1308-1317 . https://doi.org/10.1039/d1gc03988aen
dc.identifier.doi10.1039/d1gc03988aen_US
dc.identifier.issn1463-9262
dc.identifier.otherPURE UUID: 180b7252-3443-4940-8345-469497b64f10en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/180b7252-3443-4940-8345-469497b64f10en_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/113094
dc.identifier.urnURN:NBN:fi:aalto-202202231982
dc.language.isoenen
dc.publisherROYAL SOC CHEMISTRY
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/788489/EU//BioELCellen_US
dc.relation.ispartofseriesGreen Chemistryen
dc.relation.ispartofseriesVolume 24, issue 3en
dc.rightsrestrictedAccessen
dc.subject.keywordGRAPHENE-OXIDEen_US
dc.subject.keywordMECHANICAL-PROPERTIESen_US
dc.subject.keywordFE3O4 NANOPARTICLESen_US
dc.subject.keywordCOMPOSITEen_US
dc.subject.keywordCERAMICSen_US
dc.subject.keywordCHITINen_US
dc.subject.keywordTOUGHen_US
dc.subject.keywordBONEen_US
dc.titleSimple synthesis of self-assembled nacre-like materials with 3D periodic layers from nanochitin via hydrogelation and mineralizationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
Files