Extraction of Ga and Ge from zinc refinery residues in H2C2O4 solutions containing H2O2

No Thumbnail Available
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Date
2017-06-10
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
INTERNATIONAL JOURNAL OF MINERAL PROCESSING
Abstract
A new oxalic acid (H2C2O4) and hydrogen peroxide (H2O2) based extraction process was developed to recover valuable metals - in particular Ga and Ge - from the zinc refinery residues. H2C2O4 and H2O2 leaching studies indicated that the selective leaching of metals in the residues, that primarily contain Zn, Cu, Fe, SiO2, Ga and Ge, can be achieved. Under the optimal leaching conditions ([H2C2O4] = 110 g/L, [H2O2] = 0.12 mol/L, L/S ratio = 8, T = 40 °C and t = 30 min), 99.32% of the Ga, 98.86% of the Ge and 30.25% of the Fe were leached out, whereas the leaching of Zn, Cu and Si only reached 0.30%, 0.82% and 0.43%, respectively. Concerning leachate purification, 98.31% of the iron could be removed in the form of FeC2O4·2H2O with minor losses of Ga and Ge (1.08% and 0.68%) using an ultrasound-assisted iron powder replacement method under optimal conditions. The Ga (99.36%) and Ge (99.89%) were subsequently extracted by tri(octyl-decyl)amine (N235). After extraction, the loaded organic phase was stripped of Ga (98.91%) and Ge (99.21%) into separate solutions using sequential treatments of 2 mol/L H2SO4 and 4 mol/L NaOH respectively. Based on these results, a process flow sheet of efficient separation and recovery of Ga and Ge is presented.
Description
Keywords
Zinc refinery residue, Separation, Hydrogen peroxide, Oxalic acid, Germanium, Gallium
Other note
Citation
Liu, F, Liu, Z, Li, Y, Wilson, B & Lundström, M 2017, ' Extraction of Ga and Ge from zinc refinery residues in H2C2O4 solutions containing H2O2 ', International Journal of Mineral Processing, vol. 163, pp. 14–23 . https://doi.org/10.1016/j.minpro.2017.04.005