A model-based iterative learning approach for diffuse optical tomography

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMozumder, Meghdooten_US
dc.contributor.authorHauptmann, Andreasen_US
dc.contributor.authorNissilä, Ilkkaen_US
dc.contributor.authorArridge, Simon R.en_US
dc.contributor.authorTarvainen, Tanjaen_US
dc.contributor.departmentDepartment of Neuroscience and Biomedical Engineeringen
dc.contributor.organizationUniversity of Eastern Finlanden_US
dc.contributor.organizationUniversity of Ouluen_US
dc.contributor.organizationUniversity College Londonen_US
dc.date.accessioned2023-08-11T07:24:06Z
dc.date.available2023-08-11T07:24:06Z
dc.date.issued2022-05en_US
dc.descriptionPublisher Copyright: Author
dc.description.abstractDiffuse optical tomography (DOT) utilises near-infrared light for imaging spatially distributed optical parameters, typically the absorption and scattering coefficients. The image reconstruction problem of DOT is an ill-posed inverse problem, due to the non-linear light propagation in tissues and limited boundary measurements. The ill-posedness means that the image reconstruction is sensitive to measurement and modelling errors. The Bayesian approach for the inverse problem of DOT offers the possibility of incorporating prior information about the unknowns, rendering the problem less ill-posed. It also allows marginalisation of modelling errors utilising the so-called Bayesian approximation error method. A more recent trend in image reconstruction techniques is the use of deep learning, which has shown promising results in various applications from image processing to tomographic reconstructions. In this work, we study the non-linear DOT inverse problem of estimating the (absolute) absorption and scattering coefficients utilising a ‘model-based’ learning approach, essentially intertwining learned components with the model equations of DOT. The proposed approach was validated with 2D simulations and 3D experimental data. We demonstrated improved absorption and scattering estimates for targets with a mix of smooth and sharp image features, implying that the proposed approach could learn image features that are difficult to model using standard Gaussian priors. Furthermore, it was shown that the approach can be utilised in compensating for modelling errors due to coarse discretisation enabling computationally efficient solutions. Overall, the approach provided improved computation times compared to a standard Gauss-Newton iteration.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMozumder, M, Hauptmann, A, Nissilä, I, Arridge, S R & Tarvainen, T 2022, 'A model-based iterative learning approach for diffuse optical tomography', IEEE Transactions on Medical Imaging, vol. 41, no. 5, pp. 1289-1299. https://doi.org/10.1109/TMI.2021.3136461en
dc.identifier.doi10.1109/TMI.2021.3136461en_US
dc.identifier.issn0278-0062
dc.identifier.issn1558-254X
dc.identifier.otherPURE UUID: b627ed68-239f-4437-8f9e-924bc2d3e96cen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b627ed68-239f-4437-8f9e-924bc2d3e96cen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85121786975&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/117573667/SCI_Mozumder_etal_IEEE_TMI_2022.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/122394
dc.identifier.urnURN:NBN:fi:aalto-202308114743
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Medical Imagingen
dc.relation.ispartofseriesVolume 41, issue 5, pp. 1289-1299en
dc.rightsopenAccessen
dc.subject.keywordabsolute imagingen_US
dc.subject.keywordAbsorptionen_US
dc.subject.keywordconvolutional neural networksen_US
dc.subject.keywordDeep learningen_US
dc.subject.keyworddiffuse optical tomographyen_US
dc.subject.keywordImage reconstructionen_US
dc.subject.keywordInverse problemsen_US
dc.subject.keywordMathematical modelsen_US
dc.subject.keywordScatteringen_US
dc.subject.keywordTomographyen_US
dc.subject.keywordUS Department of Transportationen_US
dc.titleA model-based iterative learning approach for diffuse optical tomographyen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files