Software development defect report classification using deep learning methods
dc.contributor | Aalto University | en |
dc.contributor | Aalto-yliopisto | fi |
dc.contributor.advisor | Malo, Pekka | |
dc.contributor.advisor | Kuosmanen, Timo | |
dc.contributor.advisor | Suvanen, Jyri | |
dc.contributor.author | Ristola, Timo | |
dc.contributor.department | Tieto- ja palvelujohtamisen laitos | fi |
dc.contributor.school | Kauppakorkeakoulu | fi |
dc.contributor.school | School of Business | en |
dc.date.accessioned | 2019-06-23T16:02:37Z | |
dc.date.available | 2019-06-23T16:02:37Z | |
dc.date.issued | 2019 | |
dc.format.extent | 63 | |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/39124 | |
dc.identifier.urn | URN:NBN:fi:aalto-201906234190 | |
dc.language.iso | en | en |
dc.location | P1 I | fi |
dc.programme | Information and Service Management (ISM) | en |
dc.subject.keyword | software development | en |
dc.subject.keyword | classification | en |
dc.subject.keyword | deep learning | en |
dc.subject.keyword | defect | en |
dc.title | Software development defect report classification using deep learning methods | en |
dc.type | G2 Pro gradu, diplomityö | fi |
dc.type.ontasot | Master's thesis | en |
dc.type.ontasot | Maisterin opinnäyte | fi |
local.aalto.electroniconly | yes | |
local.aalto.openaccess | no |