Nature AND nurture: enabling formate-dependent growth in Methanosarcina acetivorans
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
21
Series
FEBS Journal, Volume 292, issue 9, pp. 2251-2271
Abstract
Methanosarcinales are versatile methanogens, capable of regulating most types of methanogenic pathways. Despite the versatile metabolic flexibility of Methanosarcinales, no member of this order has been shown to use formate for methanogenesis. In the present study, we identified a cytosolic formate dehydrogenase (FdhAB) present in several Methanosarcinales, likely acquired by independent horizontal gene transfers after an early evolutionary loss, encouraging re-evaluation of our understanding of formate utilization in Methanosarcinales. To explore whether formate-dependent (methyl-reducing or CO2-reducing) methanogenesis can occur in Methanosarcinales, we engineered two different strains of Methanosarcina acetivorans by functionally expressing FdhAB from Methanosarcina barkeri in M. acetivorans. In the first strain, fdhAB was integrated into the N5-methyl- tetrahydrosarcinapterin:coenzyme M methyltransferase (mtr) operon, making it capable of growing by reducing methanol with electrons from formate. In the second strain, fdhAB was integrated into the F420-reducing hydrogenase (frh) operon, instead of the mtr operon, enabling its growth with formate as the only source of carbon and energy after adaptive laboratory evolution. In this strain, one CO2 is reduced to one methane with electrons from oxidizing four formate to four CO2, a metabolism reported only in methanogens without cytochromes. Although methanogens without cytochromes typically utilize flavin-based electron bifurcation to generate the ferredoxins needed for CO2 activation, we hypothesize that, in our engineered strains, reduced ferredoxins are obtained via the Rhodobacter nitrogen fixation complex complex running in reverse. Our work demonstrates formate-dependent methyl-reducing and CO2-reducing methanogenesis in M. acetivorans that is enabled by the flexible nature of the microbe working in tandem with the nurturing provided.Description
Publisher Copyright: © 2025 Federation of European Biochemical Societies.
Other note
Citation
Bao, J, Somvanshi, T, Tian, Y, Laird, M G, Garcia, P S, Schöne, C, Rother, M, Borrel, G & Scheller, S 2025, 'Nature AND nurture: enabling formate-dependent growth in Methanosarcina acetivorans', FEBS Journal, vol. 292, no. 9, pp. 2251-2271. https://doi.org/10.1111/febs.17409