Two-layer Federated Learning with Heterogeneous Model Aggregation for 6G Supported Internet of Vehicles

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorZhou, Xiaokangen_US
dc.contributor.authorLiang, Weien_US
dc.contributor.authorShe, Jinhuaen_US
dc.contributor.authorYan, Zhengen_US
dc.contributor.authorWang, Kevin I-Kaien_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorNetwork Security and Trusten
dc.contributor.organizationShiga Universityen_US
dc.contributor.organizationHunan University of Technologyen_US
dc.contributor.organizationTokyo University of Technologyen_US
dc.contributor.organizationUniversity of Aucklanden_US
dc.date.accessioned2021-08-25T06:53:44Z
dc.date.available2021-08-25T06:53:44Z
dc.date.issued2021-06en_US
dc.descriptionPublisher Copyright: IEEE
dc.description.abstractThe vision of the upcoming 6G technologies that have fast data rate, low latency, and ultra-dense network, draws great attentions to the Internet of Vehicles (IoV) and Vehicle-to-Everything (V2X) communication for intelligent transportation systems. There is an urgent need for distributed machine learning techniques that can take advantages of massive interconnected networks with explosive amount of heterogeneous data generated at the network edge. In this study, a two-layer federated learning model is proposed to take advantages of the distributed end-edge-cloud architecture typical in 6G environment, and to achieve a more efficient and more accurate learning while ensuring data privacy protection and reducing communication overheads. A novel multi-layer heterogeneous model selection and aggregation scheme is designed as a part of the federated learning process to better utilize the local and global contexts of individual vehicles and road side units (RSUs) in 6G supported vehicular networks. This context-aware distributed learning mechanism is then developed and applied to address intelligent object detection, which is one of the most critical challenges in modern intelligent transportation systems with autonomous vehicles. Evaluation results showed that the proposed method, which demonstrates a higher learning accuracy with better precision, recall and F1 score, outperforms other state-of-the-art methods under 6G network configuration by achieving faster convergence, and scales better with larger numbers of RSUs involved in the learning process.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationZhou, X, Liang, W, She, J, Yan, Z & Wang, K I-K 2021, ' Two-layer Federated Learning with Heterogeneous Model Aggregation for 6G Supported Internet of Vehicles ', IEEE Transactions on Vehicular Technology, vol. 70, no. 6, 9424984, pp. 5308-5317 . https://doi.org/10.1109/TVT.2021.3077893en
dc.identifier.doi10.1109/TVT.2021.3077893en_US
dc.identifier.issn0018-9545
dc.identifier.otherPURE UUID: b8d7eb8f-c744-4194-8acc-dc3b6c3c7b0den_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b8d7eb8f-c744-4194-8acc-dc3b6c3c7b0den_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85105861288&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/66511678/ELEC_Zhou_etal_Two_layer_Federated_Learning_IEEE_Transactions_on_Vehicular_Technology_2021_acceptedauthormanuscript.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/109170
dc.identifier.urnURN:NBN:fi:aalto-202108258407
dc.language.isoenen
dc.publisherIEEE
dc.relation.ispartofseriesIEEE Transactions on Vehicular Technologyen
dc.relation.ispartofseriesVolume 70, issue 6, pp. 5308-5317en
dc.rightsopenAccessen
dc.subject.keyword6G mobile communicationen_US
dc.subject.keyword6G technologyen_US
dc.subject.keywordCollaborative worken_US
dc.subject.keywordComputational modelingen_US
dc.subject.keywordData modelsen_US
dc.subject.keywordDistributed databasesen_US
dc.subject.keywordEnd-edge-cloud computingen_US
dc.subject.keywordFederated learningen_US
dc.subject.keywordHeterogeneous dataen_US
dc.subject.keywordInternet of vehiclesen_US
dc.subject.keywordObject detectionen_US
dc.subject.keywordTrainingen_US
dc.titleTwo-layer Federated Learning with Heterogeneous Model Aggregation for 6G Supported Internet of Vehiclesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files